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Linear Programming

* Alinear program (LP) is an optimization problem of the form

n

minimize g C;x;j
xZT

j=1
mn
subject to ZAijSEj =b;, 1=1,...,m,
j=1
€j§a;j§uj, jZl,...,?’L,

« Why do we care about this problem?
« Some applications (e.g., blending in the oil industry)
» Work horse for mixed integer programming solvers
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Mixed Integer Programming

« A mixed-integer program (MIP) is an optimization problem of the form

n

minimize g C;x;j
X
j=1
mn
subject to g Ajjz; =b;,, 1=1,...,m,
j=1
€j§a;j§uj, ]:1,...,7’1,,

some or all z,; integer

« Why do we care about this problem?
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Accounting
Advertising
Agriculture

Airlines

ATM provisioning
Compilers

Defense

Electrical power
Energy

Finance

Food service
Forestry

Gas distribution
Government
Internet applications
Logistics/supply chain
Medical

Mining

Applications of Mixed Integer Programming

National research labs
Online dating

Portfolio management
Railways

Recycling

Revenue management
Semiconductor
Shipping

Social networking
Sports betting

Sports scheduling
Statistics

Steel Manufacturing
Telecommunications
Transportation

Utilities

Workforce scheduling
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MIP Application Types

o Static MIP

Formulate problem

Solve it with a black-box MIP algorithm

Read solution

Potentially adjust problem and iterate

most frequent use of MIP in practical applications

* Branch-and-cut

Problem has too many constraints to formulate in static fashion
* e.g., classical TSP model: exponentially many sub-tour elimination constraints
Construct partial problem

* Add violated constraints on demand
« Branch-and-price

Problem has too many variables to formulate in static fashion
* e.g., many public transport and airline problems are solved via B&P
Start with subset of variables
Pricing: add variables that may improve solution on the fly
Usually needs problem specific branching rule that is compatible with pricing
Heuristic variant: column generation

« Only apply pricing for the root LP, then solve static MIP with resulting set of
variables
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MIP Building Blocks

Presolve
» Tighten formulation and reduce problem size

Solve continuous relaxations
* Ignoring integrality
» Gives a bound on the optimal integral objective

Cutting planes
* Cut off relaxation solutions

Branching variable selection
« Crucial for limiting search tree size

Primal heuristics
« Find integer feasible solutions

Copyright 2017, Gurobi Optimization, Inc.
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MIP Building Blocks

Presolve
» Tighten formulation and reduce problem size

Solve continuous relaxations
* Ignoring integrality
» Gives a bound on the optimal integral objective

Cutting planes
* Cut off relaxation solutions

Branching variable selection
« Crucial for limiting search tree size

Primal heuristics
« Find integer feasible solutions
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e Goal

» Reduce the problem size
» Speedup linear algebra during the solution process

« Example
X+y+z<5 (1)
u-x—z=0 (2)
0<x,y,z<1 (3)
uis free (4)

« Reductions
» Redundant constraint
* (3)=>x+y+z=<3,s0(1)is redundant
» Substitution
* (2) and (4) = u can be substituted with x + z

8 Copyright 2017, Gurobi Optimization, Inc.
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MIP Presolve

« Goals:
* Reduce problem size
» Speed-up linear algebra during the solution process
« Strengthen LP relaxation
* ldentify problem sub-structures
* Cligues, implied bounds, networks, disconnected components, ...

« Similar to LP presolve, but more powerful:

» Exploit integrality
* Round fractional bounds and right hand sides
« Lifting/coefficient strengthening
* Probing

» Does not need to preserve duality
« We only need to be able to uncrush a primal solution
» Neither a dual solution nor a basis needs to be uncrushed

Copyright 2017, Gurobi Optimization, Inc.
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MIP Presolve

« Goals:
» Reduce problem size
» Speed-up linear algebra during the solution process
« Strengthen LP relaxation
* ldentify problem sub-structures
» Cliques, implied bounds, networks, disconnected components, ...

« Similar to LP presolve, but more powerful:
» Exploit integrality
* Round fractional bounds and right hand sides
« Lifting/coefficient strengthening
* Probing
» Does not need to preserve duality

* We . without presolve with presolve
. Nej mode
b LP ob) LP obj

roll3000 2291 1166 11097.1 11120.0

neos-/87933 1897 236376 3.0 41 126 30.0
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Single-Row Reductions

« Clean-up rows
» Discard empty rows
 Discard redundant inequalities: sup{A, x} = b,
* Remove coefficients with tiny impact |a;-(u;-)|
« Bound strengthening
* a;>0,s:=b - Inf{A X} = x = |, + s/a,
* ,;<0,s:=Db - Inf{A X} = X 2 u; + s/a,

 Coefficient strengthening for inequalities
* Jel,a;>0,t=Db, -sup{Ax}+a,>0

= arJ = arJ - t, bl’ = br - th

Copyright 2017, Gurobi Optimization, Inc.
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Single-Row Reductions — Performance
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Single-Column Reductions

Remove fixed variables and empty columns
* If [u;-l| =€, fix to some value in [l;,u,] and move terms to rhs
» Choice of value can be very tricky for numerical reasons

Round bounds of integer variables

Strengthen semi-continuous and semi-integer variables

Dual fixing, substitution, and bound strengthening
* Variable x, does not appear in equations
* ¢20,A;20 = x =]

° G2 0, A,z 0 except for a; < 0,
z =0 — row | redundant, = X =1+ (url)-z

* ¢; 20, all rows i with a; < O redundant for x; =2t = X, = max{l;}

Copyright 2017, Gurobi Optimization, Inc.
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Single-Column Reductions — Performance
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Multi-Row Reductions

Parallel rows
» Search for pairs of rows such that coefficient vectors are parallel to each other
» Discard the dominated row, or merge two inequalities into an equation

Sparsify
» Add equations to other rows in order to cancel non-zeros
» Can also add inequalities with explicit slack variables

Multi-row bound and coefficient strengthening

* Like single-row version, but use other rows to get tighter bound on infimum and supremum => tighter
bounds, better coefficients

Cligue merging
« Merge multiple cliques into larger single clique, e.g.:
X4 + X5 <1
<1
<1

X1 + X3
X2 + X3

with binary variables x;, x,, x5 can be merged into
X4 + X5 + X3 <1

Copyright 2017, Gurobi Optimization, Inc.
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Multi-Row Reductions
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Multi-Column Reductions

« Fix redundant penalty variables
* Penalty variables: support(A;) = 1
« Multiple penalty variables in a single constraint
« Some can be fixed if others can accomplish all that is needed

 Parallel columns (say, columns 1 and 2): A, = sA,
* U, =,C,28C,,2¢lor(|s|=1,{1,2 < I): x; =1,
* |,=-0,c,s80,,2¢lor(s|=1,{1,2} S I): X, :=u,
* C,=SC, 12¢&lor(s|=1, {12} € I) X;.:=X; +SX,
» Detection algorithm: two level hashing plus sorting
« Dominated columns: A ; = sA ,, only inequalities
* U,=,C 2SC,,2¢lor(|s|=1,{1,2}c1):x;,:=1;
» Detection algorithm: essentially pair-wise comparison
« Can be very expensive: needs work limit

17 Copyright 2017, Gurobi Optimization, Inc.
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Multi-Column Reductions — Performance
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Full Problem Reductions

« Symmetric variable substitution

 Integer variables in same orbit can be aggregated if the involved symmetries
do not overlap

« Continuous variables in same orbit can always be aggregated
* Issue: symmetry detection can sometimes be time consuming!

* Probing

« Tentatively fix binary x = 0 and x = 1, propagate fixing to get domain
reductions for other variables

e X=0->y<uypx=1->y<u, = Yy<max{uyu} (bound strength.)
* X=0-oy=l,x=1->y=u, = y:=1 + ()X (substitution)
c aysb,x=1—-ays<sd<b = ay+(b-d)x<b (lifting)

» Sequence dependent
« Can be very time consuming
* Needs specialized data structures and algorithms

« Implied Integer Detection
« Primal version: ax + y = b, x integer variables, a € Z", b € Z = y integer
* Dual version:
* One of the inequalities for y will be tight, but do not know which

« |f all those inequalities lead to primal version of implied integer detection, vy is
implied integer

Copyright 2017, Gurobi Optimization, Inc.
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Full Problem Reductions
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MIP Building Blocks GUROBI
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Presolve
» Tighten formulation and reduce problem size

Solve continuous relaxations
 Ignoring integrality
» Gives a bound on the optimal integral objective

Cutting planes
* Cut off relaxation solutions

Branching variable selection
« Crucial for limiting search tree size

Primal heuristics
« Find integer feasible solutions

21 Copyright 2017, Gurobi Optimization, Inc.
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Primal and Dual LP

* Primal Linear Program:

min c'x
s.t. AX
X

>

b
0

« Weighted combination of constraints (y) and bounds (z) yields

y'AX+z'x>y'b (withz>0)

« Dual Linear Program:
MaxX

S.L.

yT

y' A+Z'

V4

b

>

Stronqg Duality Theorem:

=
c'X" =y b
(if primal and dual are both feasible)
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Simplex Algorithm

* Phase 1: find some feasible vertex solution

Copyright 2017, Gurobi Optimization, Inc.
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Simplex Algorithm

objective

* Pricing: find directions in which objective improves and select one of
them

24 Copyright 2017, Gurobi Optimization, Inc.
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Simplex Algorithm

» Ratio test: follow outgoing ray until next vertex is reached

Copyright 2017, Gurobi Optimization, Inc.
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Simplex Algorithm

* |terate until no more improving direction is found
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@ @ @
objective
. . v .
MIP-optimal solutions
@ @ @ @ @
LP-optimal solutions
@ @ @ @ @ @ @ @
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MIP — LP Relaxation
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@ @ @
objective
@ @ @
MIP-optimal solutions
@ @ @ @
v v o v
@ @ @ @ @ @ @ @

No feasible solutions can be better than an LP optimum

Copyright 2017, Gurobi Optimization, Inc.
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MIP Building Blocks

Presolve
» Tighten formulation and reduce problem size

Solve continuous relaxations
* Ignoring integrality
» Gives a bound on the optimal integral objective

Cutting planes
» Cut off relaxation solutions

Branching variable selection
« Crucial for limiting search tree size

Primal heuristics
« Find integer feasible solutions

29 Copyright 2017, Gurobi Optimization, Inc.



MIP — Cutting Planes GUROBI
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@ @
objective
@ v @
@ @
fractional LP-optimal solution
@ @ @ @ @ @ @
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MIP — Cutting Planes GUROBI
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@ @
objective
@ v @
@ @
fractional LP-optimal solution
ReOptimal solution
@ @ @ @ @ @ @
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MIP — Cutting Planes

@ @
objective

@ @

@ @

@ @
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MIP — Cutting Planes

@ @
objective

@ @

@ @

@ @
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MIP — Cutting Planes

@ @ @) @) @) @ @ @
objective
@ @) @) @) @) @) O v ©
@ O @) @) @ @
improved dual bound
v v v v v v v v v
@ @ @ @ @ @ @ @

No feasible solutions can be better than an LP optimum
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Cutting Planes — Overview

« General-purpose cutting planes
« Gomory mixed integer cuts

» Mixed Integer Rounding (MIR) cuts

* Flow cover cuts
« Lift-and-project (L&P) cuts
o Zero-half and mod-k cuts

 Structural cuts
* Implied bound cuts
» Knapsack cover cuts
 GUB cover cuts
» Clique cuts
* Multi-commodity-flow (MCF) cuts
» Flow path cuts

Copyright 2017, Gurobi Optimization, Inc.
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Mixed Integer Rounding Cuts

« Consider S = {(x,y) € ZxR., | x —y = b}.
1

1-fo

Is valid for S with f, := b - [b].

Then, x — y < |b]

« Example: X—y<25
 MIR cut: X—2y <2 t

36 Copyright 2017, Gurobi Optimization, Inc.



Mixed Integer Rounding Cuts

« Consider S = {(x,y) € ZxR., | x —y = b}.
1

1-fo

Is valid for S with f, := b - [b].

Then, x — y < |b]

« Consider S :={(x,y) € Z°. xR, | ax + dy < b}.
Then, Z (laiJ + max{fi_fo:o}) X; + Z (M) Vi < le

1-fo 1-fo J =

Is valid for Swith f, := &, - |a], f, := b - [b].
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Mixed Integer Rounding Cuts

GUROBI

OPTIMIZATION

 General idea:

1.
2.
3.

Choose non-negative multipliers A € R™,
Aggregated inequality ATAx < ATb is valid for P because A = 0
Apply MIR formula to aggregated inequality to produce cutting plane

« Cut separation procedure of Marchand and Wolsey (1998, 2001):

1.

2.

3.

Start with one constraint of the problem (do this for each one), call this the "current aggregated
inequality”
Apply MIR procedure to current aggregated inequality

(a) Complement variables if LP solution is closer to upper bound

(b) For each a; in constraint and each of 6 € {1,2,4,8} divide the constraint by 5[a,| and apply MIR formula to resulting
scaled constraint

(c) Choose most violated cut from this set of MIR cuts
(d) Check if complementing one more (or one less) variable yields larger violation
If no violated cut was found (and did not yet reach aggregation limit):

(a) Add another problem constraint to the current aggregated inequality such that a continuous variable with LP value
not at a bound is canceled

(b) Goto 2

Copyright 2017, Gurobi Optimization, Inc.



39
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Just an alternative way to aggregate constraints

Read them from an optimal simplex tableau:
* Letibe a basis index with x* ¢ Z
« Choose A" = (AgY).
» Resulting aggregated inequality: x; + (Ag™), Ay Xy = (Ag™H).b

Apply MIR formula on resulting aggregated inequality

In theory, always produces a violated cutting plane

Practical issues:
« Gomory Mixed Integer Cuts can be pretty dense
« Numerics (in particular for higher rank cuts) can be very challenging

* But:
+ |If done right, GMICs (together with MIRS) are currently the most important cutting planes in practice

Copyright 2017, Gurobi Optimization, Inc.
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Knapsack Cover Cuts

A (binary) knapsack is a constraint ax < b with
* a 20 the weight of itemi,i=1,...n
« b = 0 the capacity of the knapsack

Anindex set C < {1,...,n}is called a cover, if z a; > b
lEC

A cover C entails a cover inequality
z Xi < |C| —1
leC

Interesting for cuts: minimal covers

Zai>b and ZaiSb forall ¢’ cc

ieC iec’

40 Copyright 2017, Gurobi Optimization, Inc.
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Knapsack Cover Cuts — Example

Consider knapsack 3x; + 5x, + 8x; + 10x, + 17x; < 24, x € {0,1}°
A minimal coveris C = {1,2,3,4}

Resulting cover inequality: x, + X, + X5 + X, = 3

Lifting
e Ifxg=1,then x; + X, + X5+ %, =1
* Hence, x; + X, + X3 + X, + 2x; = 3 is valid
* Need to solve knapsack problem o; := d, - max{dx | ax = b - a} to find lifting coefficient for variable x,
* Use dynamic programming to solve knapsack problem

Copyright 2017, Gurobi Optimization, Inc.
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Cutting Planes — Performance
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MIP Building Blocks

Presolve
» Tighten formulation and reduce problem size

Solve continuous relaxations
* Ignoring integrality
» Gives a bound on the optimal integral objective

Cutting planes
* Cut off relaxation solutions

Branching variable selection
 Crucial for limiting search tree size

Primal heuristics
« Find integer feasible solutions

43 Copyright 2017, Gurobi Optimization, Inc.
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@ @ @
objective

@ @ v @

@ @ @

@ @ @ @ @ @ @ @
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MIP — Branching

@ @ @
objective

@ @ v @

@ @ @

@ @ @
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O O @ O O O O
objective

O o P 19 o P 5 © O O v @

O O 8; ® O O O

O O O O O O O O
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MIP — Branching GUROBI
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@ @ @) @) @ @ @
objective
@ @) C @) @) @) O v @
Py ¢ P,
o O e O @ o O
apother improvement in dual bound
v v v DS IS TS 3 ' v v v v
@ @ @ @ @ @ @ @
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LP based Branch-and-Bound

Solve LP relaxation:
v=3.5 (fractional)

Copyright 2017, Gurobi Optimization, Inc.
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LP based Branch-and-Bound
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LP based Branch-and-Bound
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LP based Branch-and-Bound

Copyright 2017, Gurobi Optimization, Inc.

Lower Bound

(1) GAP =0 = Proof of optimality
(2) In practice: good quality solution often enough

GUROBI

OPTIMIZATION



Solving a MIP Model

Objective

_—

52

Time
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Branching Variable Selection

* Given a relaxation solution x*

« Branching candidates:

* Integer variables x; that take fractional values
X = 3.7 produces two child nodes (x = 3 or x = 4)

» Need to pick a variable to branch on
« Choice is crucial in determining the size of the overall search tree

53 Copyright 2017, Gurobi Optimization, Inc.
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Branching Variable Selection

« What's a good branching variable?
» Superb: fractional variable infeasible in both branch directions
» Great: infeasible in one direction
« Good: both directions move the objective

« Expensive to predict which branches lead to infeasibility or big objective moves

» Strong branching
« Truncated LP solve for every possible branch at every node
» Rarely cost effective

* Need a quick estimate

Copyright 2017, Gurobi Optimization, Inc.
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Pseudo-Costs

« Use historical data to predict impact of a branch:
* Record cost(x) = Aobj / Ax; for each branch

» Store results in a pseudo-cost table

* Two entries per integer variable
» Average down cost
» Average up cost

» Use table to predict cost of a future branch

Copyright 2017, Gurobi Optimization, Inc.
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Pseudo-Costs

« Use historical data to predict impact of a branch:
* Record cost(x) = Aobj / Ax; for each branch

» Store results in a pseudo-cost table

* Two entries per integer variable
» Average down cost
» Average up cost

» Use table to predict cost of a future branch

down pseudo-cost update:
Aobj/Ax =7/0.7=10

Copyright 2017, Gurobi Optimization, Inc.
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Aobj/Ax = 6/0.3 = 20
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Pseudo-Costs

« Use historical data to predict impact of a branch:
* Record cost(x) = Aobj / Ax; for each branch

» Store results in a pseudo-cost table

* Two entries per integer variable
» Average down cost
» Average up cost

» Use table to predict cost of a future branch

pseudo costs:
downcost(x) = 10
upcost(x) = 20

down estimate: up estimate:
c'=17+04-10=21 ¢'=17+0.6-20=29

Copyright 2017, Gurobi Optimization, Inc.
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Pseudo-Costs Initialization

« What do you do when there is no history?
« E.g., at the root node

* Initialize pseudo-costs [Linderoth & Savelsbergh, 1999]

* Always compute up/down cost (using strong branching) for new fractional variables
« Initialize pseudo-costs for every fractional variable at root

 Reliability branching [Achterberg, Koch & Martin, 2005]
» Do not rely on historical data until pseudo-cost for a variable has been recomputed r times

Copyright 2017, Gurobi Optimization, Inc.
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Branching Rules — Performance
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Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013)

benchmark data based on CPLEX 12.5
Achterberg, Koch, and Martin: "Branching Rules Revisited" (2005)
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MIP Building Blocks

Presolve
» Tighten formulation and reduce problem size

Solve continuous relaxations
* Ignoring integrality
» Gives a bound on the optimal integral objective

Cutting planes
* Cut off relaxation solutions

Branching variable selection
« Crucial for limiting search tree size

Primal heuristics
» Find integer feasible solutions

60 Copyright 2017, Gurobi Optimization, Inc.



61

Primal Heuristics

 Try to find good integer feasible solutions quickly
« Better pruning during search due to better bound
» Reach desired gap faster
« Often important in practice: quality of solution after fixed amount of time

 Start heuristics
» Try to find integer feasible solution, usually "close" to LP solution

* Improvement heuristics
* Given integer feasible solution, try to find better solution

Copyright 2017, Gurobi Optimization, Inc.
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Primal Heuristics Explained on Twitter

Matteo Fischetti . MFischetti - 1 Sid
! (@AchterbergT hmmm, challenging suggestion: write a full scientific
paper in a tweet! | would be tempted...

Matteo Fischetti = MFischetii - 1 Sid
) .@AchterbergT e.g. #LocalBranching take a 0-1 MIP and a solution x*, bound
Hamming distance from x* through a linear cut, and solve again.

1

Matteo Fischetti . MFischetti - 1 Std
o .@DAchterbergT #RINS take a MIP, a feasible sol. x~ and the LP relaxation sol.
x*, fix all components that agree, and solve as a MIP.

4
Matteo Fischetti  MFischetti - 1 Std

) .@AchterbergT #FP Take MIP and LP sol. x*, round it, solve LP again but
minimizing Hamming distance from rounded sol. Repeat. Serve it warm.

2

Copyright 2017, Gurobi Optimization, Inc.
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Primal Heuristics — Examples

 Start heuristics
» Rounding heuristics: round LP solution to integral values
» Potentially, try to fix constraint infeasibilities
» Fix-and-dive heuristics: fix variables, propagate, resolve LP
» Feasibility pump: push LP solution towards integrality by modifying objective
 RENS: Solve sub-MIP in neighborhood of LP solution

* Improvement heuristics
« 1-Opt and 2-Opt: Modify one or two variables to get better objective
» Local Branching: Solve sub-MIP in neighborhood of MIP solution
» Mutation: Solve sub-MIP in neighborhood of MIP solution
« Crossover: Solve sub-MIP in neighborhood of 2 or more MIP solutions
* RINS: Solve sub-MIP in neighborhood of LP and MIP solution

Copyright 2017, Gurobi Optimization, Inc.
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Primal Heuristics — Performance
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Berthold: "Primal Heuristics for Mixed Integer Programs" (2006)
benchmark data based on SCIP 0.82b
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Primal Heuristics — Measuring Performance

Is time to optimality a good measure to assess impact of heuristics?
» Goal of heuristics is to provide good solutions quickly
» Faster progress in dual bound due to additional pruning is only secondary

« Often important for practitioners:
» Find any feasible solution quickly to validate that model is reasonable
« Find good solution in reasonable time frame

|cTx*—cT%|

Primal gap: YP(%) =

max{|cTx*|,|cT%|}
1, if no incumbent until time ¢t
yP (f(t)), with ¥(t) being incumbent at time ¢t

Primal gap function: p(t) =

Primal integral: P(T) = fthOp(t)dt
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Primal Integral

QObjective

_—

Time

Copyright 2017, Gurobi Optimization, Inc.
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Primal Heuristics — Performance

90

80

70

HEtime to first (s) Dtime to opt (s) m@primal integral (%)

90

HEURISTICS ON HEURISTICS OFF

Berthold (2014): "Heuristic algorithms in global MINLP solvers"
benchmark data based on SCIP 3.0.2
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Branch-and-Cut
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Branch-and-Cut

Gurobi Optimizer version 6.0.0 (linux64)
Copyright (c) 2014, Gurobi Optimization, Inc.

Read MPS format model from file /models/mip/roll13000.mps.bz2
Reading time = 0.03 seconds

roll13000: 229 y, 1166 columns, 29386 nonzeros
Optimize a del with 2295 rows, 1166 columns and 29386 nonze%gg:::>

Coefficient sta

. . Matrix range [2e-01, 3e+02]
Confhct AnaIyS|S Objective range [le+00, 1e+00]
Bounds range [1e+00, 1e+09]

RHS ranoe Coe— ==,

'ﬁ?ZSEIQé removed 1308 rows and 311 columns

Presolve time: 0.08s >
resolved: 987 rows, 855 columns, 19346 nonzergQs

Wﬂ Cr—————r T Leger (545 binary)

Cut“ng Planes | Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 11120.0279 0 154 - 11120.0279 = = 0s
0 0 11526.8918 0 207 - 11526.8918 = = 0s
0 0 11896.9710 0 190 - 11896.9710 = = 0s

DIAaricinriy

Copyright 2017, Gurobi Optimization, Inc.
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Branch-and-Cut

Presolving

/:—

Which open node should be processed next?
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Branch-and-Cut

\ 4

Presolving

l

Conflict Analysis «—— Node Presolve

N

Node Selection +——

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations,

0.03 seconds >

Nodes |
Expl Unexpl

0 11120.0279 0 154 - 11120.
0 11526.8918 0 207 - 11526.
0 11896.9710 0 190 - 11896.
H 327 218 13135.000000 12455.
H 380 264 13093.000000 12455.
H 413 286 13087.000000 12455.

1N A A 7N°D 19290BRL 297 & 27 102 122097 NNNN 12250

rrent Node | Objective Bounds
BDepth IntInf | Incumbent BestBd

0279
8918
9710

2162
2162

2162
VA

0o Ol

Gap

Work
It/Node Time

= Os
= Os
= Os

1ls
1ls
1ls

| e
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Branch-and-Cut

\ 4

Presolving Node Selection <+—

i |

If node presolve or LP relaxation proves infeasibility of the

/]
W » Analyze conflict to derive conflict constraint

« Can be used as cutting plane and for node presolve

| See Jakob Witzig's talk on Wednesday

Cutting Planes +« 1

Heuristics

|

Branching W
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Presolved: 987 rows, 855 columns, 19346 nonzeros
Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Presolving —
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
7
. . 0 0 11120.0279 0 154 - 11120.0279 = = Os
Conflict Analysis 1 0 0 207 - 11526.8918 - - 0s
A 0 0 190 - 11896.9710 - - Os
0 0 190 - 12151.4022 — — Os
0 0 208 - 12278.3391 - - Os

52 143 12890.0000 12829.0134 0.47% 54.5 25s

Learned:
Gomory: 46
Cover: 39
Implied bound: 8
Clique: 2

MIR: 112

Flow cover: 27
GUB cover: 11
Zero half: 91

Explo nodes (357915 simplex iterations) in 27.17 seconds
Thread count was 4 (of 8 available processors)
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Branch-and-Cut

Presolved: 987 rows, 855 columns, 19346
211 continuous, 644 integer (545 binary)

Variable types:
Root relaxation:

Nodes |

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
- 0 0 11120.0279 0 154 - 11120.0279 - - 0s
Presolving 0 0 11526.8918 0 207 - 11526.8918 - - 0s
0 11896.9710 0 190 - 11896.9710 - - 0s
0 0 12448.7684 0 1 12448.7684 - - 0s
- H\ O 0 16129.000000\12448.7684 22.85% - 0s
Conflict A H\ 0 0 15890.000000 \2448.7684 21.7% - 0s
0 2 12448.7684 0 181 15890.0000 XA2448.7684 21.7% - 0s
H a2 120 15738.000000 1p450.7195 20.9% 43.8 1s
H §12 189 14596.000000 1p453.8870 14.7% 42.3 1s
H 4§17 181 13354.000000 1p453.8870 6.74% 42.6 1s
| « $34 181 40 13319.000000 453.8870 6.50% 42.1 1s
H P54 190 13307.000000 J2453.8870 6.41% 41.3 1s
_ H fpsa 194 13183.000000/12453.8870 5.53% 42.6 1s
Cutting PI§ s /256 194 13169. 12453.8870 5.43% 42.7 1s

\ " 4

objective 1.112003e+04,

Current Node |

nonzeros

1063 iterations,

Objective Bounds

0.03 seconds

| Work

Branching

Copyright 2017, Gurobi Optimization, Inc.
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Presolvir

Conflict At

-

Cutting P

Presolved:
Variable types:

Root relaxation:

Nodes

Expl Unexpl

0
0
0

1066
1097
1135
3416
5485

o

702
724
710
887
634

987 rows,
211 continuous,

I
| Ob

11120.
11526.
11896.

12448.

12956.
12671.
12732.
12839.
12885.

Current Node
37 Depth IntInf

0279
8918
9710

7684

2676
8285
5601
9880
3652

31

32
46
52

855 columns,
644 integer

154
207
190

19346 nonzeros

objective 1.112003e+04,

| Incumbent

3087.
3087.
2890.
2890.
12890.

1063 iterations,

Objective Bounds
BestBd

890.000000
15890.

0000

0000
0000
0000
0000
0000

(545 binary)

11120.
11526.
11896.

12448.
12448.

12629.
12671.
12727.
12780.
12829.

0279
8918
9710

7684
7684

5426
8285
1362
7059
0134

0.03 seconds

Gap

21.

O O W Ww

o°

~J
o°

.50%
17%
.26%
.85%
L47%

It/Node Time

37.
41.
44,
49.
54.

o 3 o o N

Work

Os
Os
Os

Os
Os

5s
10s
15s
20s
25s

A\ 4
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Performance Impact of MIP Solver Components

(CPLEX 12.5 or SCIP)

GUROBI

OPTIMIZATION

Heuristics
Achterberg and Wunderling: "Mixed .

Integer Programming: Analyzing 12
Years of Progress” (2013)

" LP Relaxation h

[1] Achterberg: "Constraint Integer
Programming” (2007)

[2] http://plato.asu.edu/ftp/milpc.html
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Parallelization

 Parallelization opportunities

 Parallel probing during presolve
» Almost no improvement

» Use barrier or concurrent LP for initial LP relaxation solve
« Only helps for large models

* Run heuristics or other potentially useful algorithms in parallel to the root cutting plane loop
* Moderate performance improvements: 20-25%
» Does not scale beyond a few threads

» Solve branch-and-bound nodes in parallel
« Main speed-up for parallel MIP
« Performance improvement depends a lot on shape of search tree
« Typically scales relatively well up to 8 to 16 threads

Copyright 2017, Gurobi Optimization, Inc.
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Parallelization

 Parallelization issues
» Determinism
Load balancing
CPU heat and memory bandwidth
« Additional threads slow down main thread
Root node does not parallelize well
« Sequential runtime of root node imposes limits on parallelization speed-up
« Amdabhl's law

A dive in the search tree cannot be parallelized
» Parallelization only helps if significant number of dives necessary to solve model

Copyright 2017, Gurobi Optimization, Inc.
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Parallel MIP — Performance

y
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Enode count mEspeed-up

245%

2 THREADS 4 THREADS 6 THREADS 8 THREADS 10 THREADS

270%

12 THREADS

Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013)
benchmark data based on CPLEX 12.5, models with = 100 seconds solve time
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No Further Questions? Enjoy Your Coffee Break!

C@OISIREE
TILME
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