

Solving Mixed Integer Programs in Practice

Linear Programming

• A linear program (LP) is an optimization problem of the form

$$\begin{array}{ll} \underset{x}{\operatorname{minimize}} & \sum_{\substack{j=1\\n}}^{n} c_j x_j \\ \text{subject to} & \sum_{\substack{j=1\\\ell_j \leq x_j \leq u_j, \quad j=1,\ldots,n,}^{n} A_{ij} x_j = b_i, \quad i = 1,\ldots,m, \end{array}$$

- Why do we care about this problem?
 - Some applications (e.g., blending in the oil industry)
 - Work horse for mixed integer programming solvers

Mixed Integer Programming

• A mixed-integer program (MIP) is an optimization problem of the form

$$\begin{array}{ll} \underset{x}{\operatorname{minimize}} & \sum_{\substack{j=1\\n}}^{n} c_{j} x_{j} \\ \text{subject to} & \sum_{\substack{j=1\\l \leq x_{j} \leq u_{j}, \quad j=1,\ldots,m,} \\ \ell_{j} \leq x_{j} \leq u_{j}, \quad j=1,\ldots,n, \\ \text{some or all } x_{j} \text{ integer} \end{array}$$

• Why do we care about this problem?

Applications of Mixed Integer Programming

- Accounting
- Advertising
- Agriculture
- Airlines
- ATM provisioning
- Compilers
- Defense
- Electrical power
- Energy
- Finance
- Food service
- Forestry
- Gas distribution
- Government
- Internet applications
- Logistics/supply chain
- Medical
- Mining

- National research labs
- Online dating
- Portfolio management
- Railways
- Recycling
- Revenue management
- Semiconductor
- Shipping
- Social networking
- Sports betting
- Sports scheduling
- Statistics
- Steel Manufacturing
- Telecommunications
- Transportation
- Utilities
- Workforce scheduling
- ...

MIP Application Types

- Static MIP
 - Formulate problem
 - Solve it with a black-box MIP algorithm
 - Read solution
 - · Potentially adjust problem and iterate
 - most frequent use of MIP in practical applications
- Branch-and-cut
 - Problem has too many constraints to formulate in static fashion
 - e.g., classical TSP model: exponentially many sub-tour elimination constraints
 - Construct partial problem
 - Add violated constraints on demand
- Branch-and-price
 - Problem has too many variables to formulate in static fashion
 - e.g., many public transport and airline problems are solved via B&P
 - Start with subset of variables
 - Pricing: add variables that may improve solution on the fly
 - Usually needs problem specific branching rule that is compatible with pricing
 - Heuristic variant: column generation
 - Only apply pricing for the root LP, then solve static MIP with resulting set of variables

MIP Building Blocks

- Presolve
 - Tighten formulation and reduce problem size
- Solve continuous relaxations
 - Ignoring integrality
 - Gives a bound on the optimal integral objective
- Cutting planes
 - Cut off relaxation solutions
- Branching variable selection
 - Crucial for limiting search tree size
- Primal heuristics
 - Find integer feasible solutions

MIP Building Blocks

• Presolve

- Tighten formulation and reduce problem size
- Solve continuous relaxations
 - Ignoring integrality
 - · Gives a bound on the optimal integral objective
- Cutting planes
 - Cut off relaxation solutions
- Branching variable selection
 - Crucial for limiting search tree size
- Primal heuristics
 - Find integer feasible solutions

LP Presolve

- Goal
 - Reduce the problem size
 - Speedup linear algebra during the solution process
- Example

$x + y + z \le 5$	(1)
u - x - z = 0	(2)
$0 \le x, y, z \le 1$	(3)
u is free	(4)

- Reductions
 - Redundant constraint
 - (3) \Rightarrow x + y + z \leq 3, so (1) is redundant
 - Substitution
 - (2) and (4) \Rightarrow u can be substituted with x + z

MIP Presolve

- Goals:
 - Reduce problem size
 - Speed-up linear algebra during the solution process
 - Strengthen LP relaxation
 - Identify problem sub-structures
 - Cliques, implied bounds, networks, disconnected components, ...
- Similar to LP presolve, but more powerful:
 - Exploit integrality
 - Round fractional bounds and right hand sides
 - Lifting/coefficient strengthening
 - Probing
 - Does not need to preserve duality
 - We only need to be able to uncrush a primal solution
 - Neither a dual solution nor a basis needs to be uncrushed

MIP Presolve

- Goals:
 - Reduce problem size
 - Speed-up linear algebra during the solution process
 - Strengthen LP relaxation
 - Identify problem sub-structures
 - Cliques, implied bounds, networks, disconnected components, ...
- Similar to LP presolve, but more powerful:
 - Exploit integrality
 - Round fractional bounds and right hand sides
 - Lifting/coefficient strengthening
 - Probing
 - Does not need to preserve duality

• We	medel	without presolve		with presolve			
 Neit 	model	rows	cols	LP obj	rows	cols	LP obj
	roll3000	2291	1166	11097.1	987	855	11120.0
	neos-787933	1897	236376	3.0	41	126	30.0

Single-Row Reductions

- Clean-up rows
 - Discard empty rows
 - Discard redundant inequalities: $\sup\{A_r, x\} \le b_r$
 - Remove coefficients with tiny impact |a_{ij}·(u_j-l_j)|
- Bound strengthening
 - $a_{rj} > 0$, s:= b_r inf{ $A_r x$ } $\Rightarrow x_j \le I_j + s/a_{rj}$
 - $a_{rj} < 0$, s:= b_r inf{ $A_r \cdot x$ } $\Rightarrow x_j \ge u_j + s/a_{rj}$
- Coefficient strengthening for inequalities
 - $j \in I$, $a_{rj} > 0$, $t := b_r sup\{A_r \cdot x\} + a_{rj} > 0$
 - $\Rightarrow a_{rj} := a_{rj} t$, $b_r := b_r u_j t$

Single-Row Reductions – Performance

benchmark data based on Gurobi 5.6

Single-Column Reductions

- Remove fixed variables and empty columns
 - If $|u_i l_i| \le \epsilon$, fix to some value in $[l_i, u_i]$ and move terms to rhs
 - Choice of value can be very tricky for numerical reasons
- Round bounds of integer variables
- Strengthen semi-continuous and semi-integer variables
- Dual fixing, substitution, and bound strengthening
 - Variable \mathbf{x}_{j} does not appear in equations
 - $c_j \ge 0, A_{\cdot j} \ge 0 \implies x_j := I_j$
 - $c_j \ge 0$, $A_{\cdot j} \ge 0$ except for $a_{ij} < 0$, $z = 0 \rightarrow row i$ redundant, $z = 1 \rightarrow x_j = u_j$ $\Rightarrow x_j := l_j + (u_j - l_j) \cdot z$
 - $c_j \ge 0$, all rows i with $a_{ij} < 0$ redundant for $x_j \ge t \implies x_j \le max\{l_j,t\}$

Single-Column Reductions – Performance

Multi-Row Reductions

- Parallel rows
 - · Search for pairs of rows such that coefficient vectors are parallel to each other
 - Discard the dominated row, or merge two inequalities into an equation
- Sparsify
 - · Add equations to other rows in order to cancel non-zeros
 - · Can also add inequalities with explicit slack variables
- Multi-row bound and coefficient strengthening
 - Like single-row version, but use other rows to get tighter bound on infimum and supremum ⇒ tighter bounds, better coefficients

GUROBI

OPTIMIZATION

- Clique merging
 - Merge multiple cliques into larger single clique, e.g.:

Multi-Row Reductions

Copyright 2017, Gurobi Optimization, Inc.

Multi-Column Reductions

- Fix redundant penalty variables
 - Penalty variables: support(A_{.j}) = 1
 - Multiple penalty variables in a single constraint
 - Some can be fixed if others can accomplish all that is needed
- Parallel columns (say, columns 1 and 2): $A_{.1} = sA_{.2}$
 - $u_2 = \infty$, $c_1 \ge sc_2$, $2 \notin I$ or $(|s| = 1, \{1,2\} \subseteq I)$: $x_1 := I_1$
 - $I_2 = -\infty$, $C_1 \le sc_2$, $2 \notin I$ or $(|s| = 1, \{1,2\} \subseteq I)$: $x_1 := u_1$
 - $c_1 = sc_2$, $1,2 \notin I \text{ or } (|s| = 1, \{1,2\} \subseteq I)$: $x_{1'} := x_1 + sx_2$
 - Detection algorithm: two level hashing plus sorting
- Dominated columns: $A_{.1} \ge sA_{.2}$, only inequalities
 - $u_2 = \infty$, $c_1 \ge sc_2$, $2 \notin I$ or $(|s| = 1, \{1,2\} \subseteq I)$: $x_1 := I_1$
 - Detection algorithm: essentially pair-wise comparison
 - Can be very expensive: needs work limit

Multi-Column Reductions – Performance

Full Problem Reductions

- Symmetric variable substitution
 - Integer variables in same orbit can be aggregated if the involved symmetries do not overlap
 - Continuous variables in same orbit can always be aggregated
 - Issue: symmetry detection can sometimes be time consuming!
- Probing
 - Tentatively fix binary x = 0 and x = 1, propagate fixing to get domain reductions for other variables
 - $\bullet \quad x=0 \rightarrow y \leq u_0, \, x=1 \rightarrow y \leq u_1 \Rightarrow \ y \leq max\{u_0,u_1\}$
 - $x = 0 \rightarrow y = I_y, x = 1 \rightarrow y = u_y \implies y := I_y + (u_y I_y) \cdot x$ • $ay \le b, x = 1 \rightarrow ay \le d \le b \implies ay + (b-d) \cdot x \le b$

(bound strength.) (substitution) (lifting)

- Sequence dependent
- Can be very time consuming
 - Needs specialized data structures and algorithms
- Implied Integer Detection
 - Primal version: ax + y = b, x integer variables, $a \in \mathbb{Z}^n$, $b \in \mathbb{Z} \Rightarrow y$ integer
 - Dual version:
 - One of the inequalities for y will be tight, but do not know which
 - If all those inequalities lead to primal version of implied integer detection, y is implied integer

Full Problem Reductions

benchmark data based on Gurobi 5.6

MIP Building Blocks

- Presolve
 - Tighten formulation and reduce problem size
- Solve continuous relaxations
 - Ignoring integrality
 - · Gives a bound on the optimal integral objective
- Cutting planes
 - Cut off relaxation solutions
- Branching variable selection
 - Crucial for limiting search tree size
- Primal heuristics
 - Find integer feasible solutions

Primal and Dual LP

• Primal Linear Program:

$$\begin{array}{rcl} \min & c^T x \\ s.t. & Ax &= b \\ & x &\geq 0 \end{array}$$

• Weighted combination of constraints (y) and bounds (z) yields

$$y^{T}Ax + z^{T}x \ge y^{T}b$$
 (with $z \ge 0$)

• Dual Linear Program:

$$\max \quad y^{T}b$$

s.t.
$$y^{T}A + z^{T} = c^{T}$$

$$z \geq 0$$

Strong Duality Theorem: $c^T x^* = y^{*^T} b$ (if primal and dual are both feasible)

• Phase 1: find some feasible vertex solution

 Pricing: find directions in which objective improves and select one of them

• Ratio test: follow outgoing ray until next vertex is reached

• Iterate until no more improving direction is found

MIP – LP Relaxation

MIP – LP Relaxation

MIP Building Blocks

- Presolve
 - Tighten formulation and reduce problem size
- Solve continuous relaxations
 - Ignoring integrality
 - · Gives a bound on the optimal integral objective
- Cutting planes
 - Cut off relaxation solutions
- Branching variable selection
 - Crucial for limiting search tree size
- Primal heuristics
 - Find integer feasible solutions

Cutting Planes – Overview

- General-purpose cutting planes
 - Gomory mixed integer cuts
 - Mixed Integer Rounding (MIR) cuts
 - Flow cover cuts
 - Lift-and-project (L&P) cuts
 - · Zero-half and mod-k cuts
 - ...
- Structural cuts
 - Implied bound cuts
 - Knapsack cover cuts
 - GUB cover cuts
 - Clique cuts
 - Multi-commodity-flow (MCF) cuts
 - Flow path cuts

• ...

Mixed Integer Rounding Cuts

- Consider S := { $(x,y) \in \mathbb{Z} \times \mathbb{R}_{\geq 0} | x y \leq b$ }. Then, $x - \frac{1}{1 - f_0} y \leq \lfloor b \rfloor$ is valid for S with $f_0 := b - \lfloor b \rfloor$.
- Example: $x y \le 2.5$
- MIR cut: $x 2y \le 2$

Mixed Integer Rounding Cuts

- Consider S := { $(x,y) \in \mathbb{Z} \times \mathbb{R}_{\geq 0} | x y \leq b$ }. Then, $x - \frac{1}{1 - f_0} y \leq \lfloor b \rfloor$ is valid for S with $f_0 := b - \lfloor b \rfloor$.
- Consider S := { $(x,y) \in \mathbb{Z}_{\geq 0}^{p} \times \mathbb{R}_{\geq 0}^{q} | ax + dy \leq b$ }. Then, $\sum \left(\lfloor a_{i} \rfloor + \frac{max\{f_{i} - f_{0}, 0\}}{1 - f_{0}} \right) x_{i} + \sum \left(\frac{min\{d_{j}, 0\}}{1 - f_{0}} \right) y_{j} \leq \lfloor b \rfloor$ is valid for S with $f_{i} := a_{i} - \lfloor a_{i} \rfloor, f_{0} := b - \lfloor b \rfloor$.

Mixed Integer Rounding Cuts

- General idea:
 - 1. Choose non-negative multipliers $\lambda \in \mathbb{R}^{m}_{\geq 0}$
 - 2. Aggregated inequality $\lambda^T Ax \le \lambda^T b$ is valid for P because $\lambda \ge 0$
 - 3. Apply MIR formula to aggregated inequality to produce cutting plane
- Cut separation procedure of Marchand and Wolsey (1998, 2001):
 - 1. Start with one constraint of the problem (do this for each one), call this the "current aggregated inequality"
 - 2. Apply MIR procedure to current aggregated inequality
 - (a) Complement variables if LP solution is closer to upper bound
 - (b) For each a_j in constraint and each of $\delta \in \{1,2,4,8\}$ divide the constraint by $\delta |a_j|$ and apply MIR formula to resulting scaled constraint
 - (c) Choose most violated cut from this set of MIR cuts
 - (d) Check if complementing one more (or one less) variable yields larger violation
 - 3. If no violated cut was found (and did not yet reach aggregation limit):
 - (a) Add another problem constraint to the current aggregated inequality such that a continuous variable with LP value not at a bound is canceled
 - (b) Go to 2

Gomory Mixed Integer Cuts

- Just an alternative way to aggregate constraints
- Read them from an optimal simplex tableau:
 - Let i be a basis index with $x_i^* \not\in \mathbb{Z}$
 - Choose $\lambda^T = (A_B^{-1})_{i}$.
 - Resulting aggregated inequality: $x_i + (A_B^{-1})_{i}A_N x_N \le (A_B^{-1})_{i}b$
- Apply MIR formula on resulting aggregated inequality
- In theory, always produces a violated cutting plane
- Practical issues:
 - Gomory Mixed Integer Cuts can be pretty dense
 - Numerics (in particular for higher rank cuts) can be very challenging
- But:
 - If done right, GMICs (together with MIRs) are currently the most important cutting planes in practice

Knapsack Cover Cuts

- A (binary) knapsack is a constraint $ax \le b$ with
 - $a_i \ge 0$ the weight of item i, i = 1,...,n
 - $b \ge 0$ the capacity of the knapsack
- An index set $C \subseteq \{1,...,n\}$ is called a *cover*, if $\sum_{i \in C} a_i > b$
- A cover C entails a cover inequality

 $\sum_{i \in C} x_i \le |C| - 1$

• Interesting for cuts: minimal covers

$$\sum_{i \in C} a_i > b \text{ and } \sum_{i \in C'} a_i \le b \text{ for all } C' \subsetneq C$$

Knapsack Cover Cuts – Example

- Consider knapsack $3x_1 + 5x_2 + 8x_3 + 10x_4 + 17x_5 \le 24$, $x \in \{0,1\}^5$
- A minimal cover is $C = \{1,2,3,4\}$
- Resulting cover inequality: $x_1 + x_2 + x_3 + x_4 \le 3$
- Lifting
 - If $x_5 = 1$, then $x_1 + x_2 + x_3 + x_4 \le 1$
 - Hence, $x_1 + x_2 + x_3 + x_4 + 2x_5 \le 3$ is valid
 - Need to solve knapsack problem $\alpha_i := d_0 \max\{dx \mid ax \le b a_i\}$ to find lifting coefficient for variable x_i
 - Use dynamic programming to solve knapsack problem

Cutting Planes – Performance

Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013) benchmark data based on CPLEX 12.5

MIP Building Blocks

- Presolve
 - Tighten formulation and reduce problem size
- Solve continuous relaxations
 - Ignoring integrality
 - · Gives a bound on the optimal integral objective
- Cutting planes
 - Cut off relaxation solutions
- Branching variable selection
 - Crucial for limiting search tree size
- Primal heuristics
 - Find integer feasible solutions

Solve LP relaxation: v=3.5 (fractional) Root

Solving a MIP Model

Branching Variable Selection

- Given a relaxation solution x*
 - Branching candidates:
 - Integer variables x_i that take fractional values
 - $x_j = 3.7$ produces two child nodes (x ≤ 3 or x ≥ 4)
 - Need to pick a variable to branch on
 - · Choice is crucial in determining the size of the overall search tree

Branching Variable Selection

- What's a good branching variable?
 - Superb: fractional variable infeasible in both branch directions
 - Great: infeasible in one direction
 - Good: both directions move the objective
- Expensive to predict which branches lead to infeasibility or big objective moves
 - Strong branching
 - Truncated LP solve for every possible branch at every node
 - Rarely cost effective
 - Need a quick estimate

Pseudo-Costs

- Use historical data to predict impact of a branch:
 - Record $cost(x_i) = \Delta obj / \Delta x_i$ for each branch
 - Store results in a pseudo-cost table
 - Two entries per integer variable
 - Average down cost
 - Average up cost
 - Use table to predict cost of a future branch

Pseudo-Costs

- Use historical data to predict impact of a branch:
 - Record $cost(x_i) = \Delta obj / \Delta x_i$ for each branch
 - Store results in a pseudo-cost table
 - Two entries per integer variable
 - Average down cost
 - Average up cost
 - Use table to predict cost of a future branch

Pseudo-Costs

- Use historical data to predict impact of a branch:
 - Record $cost(x_i) = \Delta obj / \Delta x_i$ for each branch
 - Store results in a pseudo-cost table
 - Two entries per integer variable
 - Average down cost
 - Average up cost
 - Use table to predict cost of a future branch

Pseudo-Costs Initialization

- What do you do when there is no history?
 - E.g., at the root node
- Initialize pseudo-costs [Linderoth & Savelsbergh, 1999]
 - Always compute up/down cost (using strong branching) for new fractional variables
 - Initialize pseudo-costs for every fractional variable at root
- Reliability branching [Achterberg, Koch & Martin, 2005]
 - Do not rely on historical data until pseudo-cost for a variable has been recomputed r times

Branching Rules – Performance

Achterberg, Koch, and Martin: "Branching Rules Revisited" (2005)

MIP Building Blocks

- Presolve
 - Tighten formulation and reduce problem size
- Solve continuous relaxations
 - Ignoring integrality
 - · Gives a bound on the optimal integral objective
- Cutting planes
 - Cut off relaxation solutions
- Branching variable selection
 - Crucial for limiting search tree size
- Primal heuristics
 - Find integer feasible solutions

Primal Heuristics

- Try to find good integer feasible solutions quickly
 - Better pruning during search due to better bound
 - Reach desired gap faster
 - · Often important in practice: quality of solution after fixed amount of time
- Start heuristics
 - Try to find integer feasible solution, usually "close" to LP solution
- Improvement heuristics
 - Given integer feasible solution, try to find better solution

Primal Heuristics Explained on Twitter

Primal Heuristics – Examples

- Start heuristics
 - Rounding heuristics: round LP solution to integral values
 - Potentially, try to fix constraint infeasibilities
 - Fix-and-dive heuristics: fix variables, propagate, resolve LP
 - Feasibility pump: push LP solution towards integrality by modifying objective
 - RENS: Solve sub-MIP in neighborhood of LP solution
- Improvement heuristics
 - 1-Opt and 2-Opt: Modify one or two variables to get better objective
 - Local Branching: Solve sub-MIP in neighborhood of MIP solution
 - Mutation: Solve sub-MIP in neighborhood of MIP solution
 - Crossover: Solve sub-MIP in neighborhood of 2 or more MIP solutions
 - RINS: Solve sub-MIP in neighborhood of LP and MIP solution

Primal Heuristics – Performance

Berthold: "Primal Heuristics for Mixed Integer Programs" (2006) benchmark data based on SCIP 0.82b

Primal Heuristics – Measuring Performance

- Is time to optimality a good measure to assess impact of heuristics?
 - Goal of heuristics is to provide good solutions quickly
 - Faster progress in dual bound due to additional pruning is only secondary
 - Often important for practitioners:
 - Find any feasible solution quickly to validate that model is reasonable
 - Find good solution in reasonable time frame
- $\gamma^{p}(\tilde{x}) = \frac{|c^{T}x^{*} c^{T}\tilde{x}|}{\max\{|c^{T}x^{*}|, |c^{T}\tilde{x}|\}}$ • Primal gap:

- Primal gap function: $p(t) = \begin{cases} 1, \text{ if no incumbent until time } t \\ \gamma^p(\tilde{x}(t)), \text{ with } \tilde{x}(t) \text{ being incumbent at time } t \end{cases}$
- Primal integral: $P(T) = \int_{t=0}^{T} p(t) dt$

Primal Integral

Primal Heuristics – Performance

Berthold (2014): "Heuristic algorithms in global MINLP solvers" benchmark data based on SCIP 3.0.2

Putting It All Together

Presolved: 987 rows, 855 columns, 19346 nonzeros Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

	Presolved: 987 rows, 855 columns, 19346 nonzeros									
Presolvir	Variable types: 211 continuous, 644 integer (545 binary)									
	Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds									
	Nodes Current Node					I Objective Bounds			Work	
Conflict Ar						-	t BestBd		It/Noc	
	0	0	11120.027	79 0	154	-	11120.0279	_	_	0s
	0	0	11526.891	.8 0	207	-	11526.8918	_	_	0s
	0		11896.971		190		11896.9710	_	_	0s
	н О	0				890.000000	12448.7684	21.7%	_	0s
	0	2	12448.768	34 0			12448.7684		_	0s
Cutting P	1066	702	12956.267	6 31	192	13087.0000	12629.5426	3.50%	37.2	5s
U	1097	724	12671.828	85 8			12671.8285	3.17%	41.6	10s
	1135	710	12732.560)1 32	126	12890.0000	12727.1362	1.26%	44.6	15s
	3416	887	12839.988	30 46			12780.7059			20s
	5485	634	12885.365	52 52			12829.0134			25s
					$\mathbf{\Lambda}$					
					$\mathbf{\vee}$	674141414				
Branching										

Performance Impact of MIP Solver Components (CPLEX 12.5 or SCIP)

Parallelization

- Parallelization opportunities
 - Parallel probing during presolve
 - Almost no improvement
 - Use barrier or concurrent LP for initial LP relaxation solve
 - Only helps for large models
 - Run heuristics or other potentially useful algorithms in parallel to the root cutting plane loop
 - Moderate performance improvements: 20-25%
 - Does not scale beyond a few threads
 - Solve branch-and-bound nodes in parallel
 - Main speed-up for parallel MIP
 - Performance improvement depends a lot on shape of search tree
 - Typically scales relatively well up to 8 to 16 threads

Parallelization

- Parallelization issues
 - Determinism
 - Load balancing
 - CPU heat and memory bandwidth
 - Additional threads slow down main thread
 - Root node does not parallelize well
 - Sequential runtime of root node imposes limits on parallelization speed-up
 - Amdahl's law
 - A dive in the search tree cannot be parallelized
 - Parallelization only helps if significant number of dives necessary to solve model

Parallel MIP – Performance

Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013) benchmark data based on CPLEX 12.5, models with ≥ 100 seconds solve time

Copyright 2017, Gurobi Optimization, Inc.

No Further Questions? Enjoy Your Coffee Break!

