
Solving Mixed Integer Programs 
in Practice
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Linear Programming

• A linear program (LP) is an optimization problem of the form

• Why do we care about this problem?

• Some applications (e.g., blending in the oil industry)

• Work horse for mixed integer programming solvers
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Mixed Integer Programming

• A mixed-integer program (MIP) is an optimization problem of the form

• Why do we care about this problem?
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Applications of Mixed Integer Programming

• Accounting

• Advertising

• Agriculture

• Airlines

• ATM provisioning

• Compilers

• Defense

• Electrical power 

• Energy 

• Finance 

• Food service

• Forestry

• Gas distribution

• Government

• Internet applications

• Logistics/supply chain 

• Medical

• Mining

• National research labs

• Online dating

• Portfolio management

• Railways

• Recycling

• Revenue management

• Semiconductor

• Shipping

• Social networking

• Sports betting

• Sports scheduling

• Statistics

• Steel Manufacturing

• Telecommunications

• Transportation

• Utilities

• Workforce scheduling 

• ...
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MIP Application Types

• Static MIP
• Formulate problem
• Solve it with a black-box MIP algorithm
• Read solution
• Potentially adjust problem and iterate
• most frequent use of MIP in practical applications

• Branch-and-cut
• Problem has too many constraints to formulate in static fashion

• e.g., classical TSP model: exponentially many sub-tour elimination constraints

• Construct partial problem
• Add violated constraints on demand

• Branch-and-price
• Problem has too many variables to formulate in static fashion

• e.g., many public transport and airline problems are solved via B&P

• Start with subset of variables
• Pricing: add variables that may improve solution on the fly
• Usually needs problem specific branching rule that is compatible with pricing
• Heuristic variant: column generation

• Only apply pricing for the root LP, then solve static MIP with resulting set of 
variables
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MIP Building Blocks

• Presolve

• Tighten formulation and reduce problem size

• Solve continuous relaxations

• Ignoring integrality

• Gives a bound on the optimal integral objective

• Cutting planes

• Cut off relaxation solutions

• Branching variable selection

• Crucial for limiting search tree size

• Primal heuristics

• Find integer feasible solutions



Copyright 2017, Gurobi Optimization, Inc.7

MIP Building Blocks

• Presolve

• Tighten formulation and reduce problem size

• Solve continuous relaxations

• Ignoring integrality

• Gives a bound on the optimal integral objective

• Cutting planes

• Cut off relaxation solutions

• Branching variable selection

• Crucial for limiting search tree size

• Primal heuristics

• Find integer feasible solutions



Copyright 2017, Gurobi Optimization, Inc.8

LP Presolve

• Goal

• Reduce the problem size

• Speedup linear algebra during the solution process

• Example

x + y + z ≤ 5 (1)
u – x – z = 0 (2)
………
0 ≤ x, y, z ≤ 1 (3)
u is free (4)

• Reductions

• Redundant constraint

• (3)  x + y + z ≤ 3, so (1) is redundant

• Substitution

• (2) and (4)  u can be substituted with x + z
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MIP Presolve

• Goals:

• Reduce problem size

• Speed-up linear algebra during the solution process

• Strengthen LP relaxation

• Identify problem sub-structures

• Cliques, implied bounds, networks, disconnected components, ...

• Similar to LP presolve, but more powerful:

• Exploit integrality

• Round fractional bounds and right hand sides

• Lifting/coefficient strengthening

• Probing

• Does not need to preserve duality

• We only need to be able to uncrush a primal solution

• Neither a dual solution nor a basis needs to be uncrushed



Copyright 2017, Gurobi Optimization, Inc.10

MIP Presolve

• Goals:

• Reduce problem size

• Speed-up linear algebra during the solution process

• Strengthen LP relaxation

• Identify problem sub-structures

• Cliques, implied bounds, networks, disconnected components, ...

• Similar to LP presolve, but more powerful:

• Exploit integrality

• Round fractional bounds and right hand sides

• Lifting/coefficient strengthening

• Probing

• Does not need to preserve duality

• We only need to be able to uncrush a primal solution

• Neither a dual solution nor a basis needs to be uncrushedmodel
without presolve with presolve

rows cols LP obj rows cols LP obj

roll3000 2291 1166 11097.1 987 855 11120.0

neos-787933 1897 236376 3.0 41 126 30.0
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Single-Row Reductions

• Clean-up rows

• Discard empty rows

• Discard redundant inequalities: sup{Ar⋅x} ≤ br

• Remove coefficients with tiny impact |aij⋅(uj-lj)|

• Bound strengthening

• arj > 0, s:= br - inf{Ar⋅x}  xj ≤ lj + s/arj

• arj < 0, s:= br - inf{Ar⋅x}  xj ≥ uj + s/arj

• Coefficient strengthening for inequalities

• j ∈ I, arj > 0, t:= br - sup{Ar⋅x} + arj > 0

 arj := arj – t, br := br - ujt

2x – y ≤ 1

x – y ≤ 0

s/arj
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Single-Row Reductions – Performance
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Single-Column Reductions

• Remove fixed variables and empty columns

• If |uj-lj| ≤∊, fix to some value in [lj,uj] and move terms to rhs

• Choice of value can be very tricky for numerical reasons

• Round bounds of integer variables

• Strengthen semi-continuous and semi-integer variables

• Dual fixing, substitution, and bound strengthening

• Variable xj does not appear in equations

• cj ≥ 0, A⋅j ≥ 0    xj := lj
• cj ≥ 0, A⋅j ≥ 0 except for aij < 0,

z = 0 → row i redundant,  xj := lj + (uj-lj)⋅z
z = 1 → xj = uj

• cj ≥ 0, all rows i with aij < 0 redundant for xj ≥ t    xj ≤ max{lj,t}
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Single-Column Reductions – Performance
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Multi-Row Reductions

• Parallel rows
• Search for pairs of rows such that coefficient vectors are parallel to each other

• Discard the dominated row, or merge two inequalities into an equation

• Sparsify
• Add equations to other rows in order to cancel non-zeros

• Can also add inequalities with explicit slack variables

• Multi-row bound and coefficient strengthening
• Like single-row version, but use other rows to get tighter bound on infimum and supremum  tighter 

bounds, better coefficients

• Clique merging
• Merge multiple cliques into larger single clique, e.g.:

x1 + x2 ≤ 1
x1 + x3 ≤ 1

x2 + x3 ≤ 1

with binary variables x1, x2, x3 can be merged into

x1 + x2 + x3 ≤ 1
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Multi-Row Reductions
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Multi-Column Reductions

• Fix redundant penalty variables

• Penalty variables: support(A⋅j) = 1

• Multiple penalty variables in a single constraint

• Some can be fixed if others can accomplish all that is needed

• Parallel columns (say, columns 1 and 2): A⋅1 = sA⋅2

• u2 = ∞, c1 ≥ sc2, 2 ∉ I or (|s| = 1, {1,2} ⊆ I): x1 := l1
• l2 = -∞, c1 ≤ sc2, 2 ∉ I or (|s| = 1, {1,2} ⊆ I): x1 := u1

• c1 = sc2, 1,2 ∉ I or (|s| = 1, {1,2} ⊆ I): x1' := x1 + sx2

• Detection algorithm: two level hashing plus sorting

• Dominated columns: A⋅1 ≥ sA⋅2, only inequalities

• u2 = ∞, c1 ≥ sc2, 2 ∉ I or (|s| = 1, {1,2} ⊆ I): x1 := l1
• Detection algorithm: essentially pair-wise comparison

• Can be very expensive: needs work limit
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Multi-Column Reductions – Performance
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Full Problem Reductions

• Symmetric variable substitution
• Integer variables in same orbit can be aggregated if the involved symmetries 

do not overlap
• Continuous variables in same orbit can always be aggregated
• Issue: symmetry detection can sometimes be time consuming!

• Probing
• Tentatively fix binary x = 0 and x = 1, propagate fixing to get domain 

reductions for other variables
• x = 0 → y ≤ u0, x = 1 → y ≤ u1 y ≤ max{u0,u1} (bound strength.)

• x = 0 → y = ly, x = 1 → y = uy  y := ly + (uy-ly)⋅x (substitution)

• ay ≤ b, x = 1 → ay ≤ d < b  ay + (b-d)⋅x ≤ b (lifting)

• Sequence dependent
• Can be very time consuming

• Needs specialized data structures and algorithms

• Implied Integer Detection
• Primal version: ax + y = b, x integer variables, a ∈ ℤn, b ∈ ℤ  y integer
• Dual version:

• One of the inequalities for y will be tight, but do not know which

• If all those inequalities lead to primal version of implied integer detection, y is 
implied integer
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Full Problem Reductions
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MIP Building Blocks

• Presolve

• Tighten formulation and reduce problem size

• Solve continuous relaxations

• Ignoring integrality

• Gives a bound on the optimal integral objective

• Cutting planes

• Cut off relaxation solutions

• Branching variable selection

• Crucial for limiting search tree size

• Primal heuristics

• Find integer feasible solutions
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Primal and Dual LP

• Primal Linear Program:

• Weighted combination of constraints (y) and bounds (z) yields

• Dual Linear Program:

0

..

min





x

bAxts

xcT

0

..

max





z

czAyts

by
TTT

T

 0 with     zbyxzAxy TTT

Strong Duality Theorem:

(if primal and dual are both feasible)

byxc
TT  
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Simplex Algorithm

• Phase 1: find some feasible vertex solution

objective
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Simplex Algorithm

• Pricing: find directions in which objective improves and select one of 
them

objective
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Simplex Algorithm

• Ratio test: follow outgoing ray until next vertex is reached

objective
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Simplex Algorithm

• Iterate until no more improving direction is found

objective
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MIP – LP Relaxation

objective

MIP-optimal solutions

LP-optimal solutions
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No feasible solutions can be better than an LP optimum

MIP – LP Relaxation

objective

MIP-optimal solutions

LP-optimal solutions
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MIP Building Blocks

• Presolve

• Tighten formulation and reduce problem size

• Solve continuous relaxations

• Ignoring integrality

• Gives a bound on the optimal integral objective

• Cutting planes

• Cut off relaxation solutions

• Branching variable selection

• Crucial for limiting search tree size

• Primal heuristics

• Find integer feasible solutions
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fractional LP-optimal solution

MIP – Cutting Planes

objective
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fractional LP-optimal solution

MIP – Cutting Planes

objective

new LP-optimal solution
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MIP – Cutting Planes

objective
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MIP – Cutting Planes

objective
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No feasible solutions can be better than an LP optimum

MIP – Cutting Planes

objective

improved dual bound
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Cutting Planes – Overview

• General-purpose cutting planes

• Gomory mixed integer cuts

• Mixed Integer Rounding (MIR) cuts

• Flow cover cuts

• Lift-and-project (L&P) cuts

• Zero-half and mod-k cuts

• ...

• Structural cuts

• Implied bound cuts

• Knapsack cover cuts

• GUB cover cuts

• Clique cuts

• Multi-commodity-flow (MCF) cuts

• Flow path cuts

• ...
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Mixed Integer Rounding Cuts

• Consider S := {(x,y) ∈ ℤℝ≥0 | x – y ≤ b}.

Then,

is valid for S with f0 := b - ⌊b⌋.

• Example: x – y ≤ 2.5

• MIR cut: x – 2y ≤ 2

𝑥 −
1

1 − 𝑓0
𝑦 ≤ 𝑏

x – y ≤ 2.5

x – 2y ≤ 2

x

y
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Mixed Integer Rounding Cuts

• Consider S := {(x,y) ∈ ℤℝ≥0 | x – y ≤ b}.

Then,

is valid for S with f0 := b - ⌊b⌋.

• Consider S := {(x,y) ∈ ℤp
≥0ℝ

q
≥0 | ax + dy ≤ b}.

Then,

is valid for S with fi := ai - ⌊ai⌋, f0 := b - ⌊b⌋.

 𝑎𝑖 +
𝑚𝑎𝑥 𝑓𝑖−𝑓0,0

1−𝑓0
𝑥𝑖 +  

𝑚𝑖𝑛 𝑑𝑗,0

1−𝑓0
𝑦𝑗 ≤ 𝑏

𝑥 −
1

1 − 𝑓0
𝑦 ≤ 𝑏
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Mixed Integer Rounding Cuts

• General idea:
1. Choose non-negative multipliers λ ∈ ℝm

≥0

2. Aggregated inequality λTAx ≤ λTb is valid for P because λ ≥ 0

3. Apply MIR formula to aggregated inequality to produce cutting plane

• Cut separation procedure of Marchand and Wolsey (1998, 2001):
1. Start with one constraint of the problem (do this for each one), call this the "current aggregated 

inequality"

2. Apply MIR procedure to current aggregated inequality
(a) Complement variables if LP solution is closer to upper bound

(b) For each aj in constraint and each of  ∈ {1,2,4,8} divide the constraint by |aj| and apply MIR formula to resulting 
scaled constraint

(c) Choose most violated cut from this set of MIR cuts

(d) Check if complementing one more (or one less) variable yields larger violation

3. If no violated cut was found (and did not yet reach aggregation limit):
(a) Add another problem constraint to the current aggregated inequality such that a continuous variable with LP value 

not at a bound is canceled

(b) Go to 2
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Gomory Mixed Integer Cuts

• Just an alternative way to aggregate constraints

• Read them from an optimal simplex tableau:

• Let i be a basis index with xi*  ℤ

• Choose λT = (AB
-1)i⋅

• Resulting aggregated inequality: xi + (AB
-1)i⋅AN xN ≤ (AB

-1)i⋅b

• Apply MIR formula on resulting aggregated inequality

• In theory, always produces a violated cutting plane

• Practical issues:

• Gomory Mixed Integer Cuts can be pretty dense

• Numerics (in particular for higher rank cuts) can be very challenging

• But:

• If done right, GMICs (together with MIRs) are currently the most important cutting planes in practice
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Knapsack Cover Cuts

• A (binary) knapsack is a constraint ax ≤ b with

• ai ≥ 0 the weight of item i, i = 1,...,n

• b ≥ 0 the capacity of the knapsack

• An index set C ⊆ {1,...,n} is called a cover, if

• A cover C entails a cover inequality

• Interesting for cuts: minimal covers

and for all 

 

𝑖∈𝐶

𝑎𝑖 > 𝑏

 

𝑖∈𝐶

𝑥𝑖 ≤ 𝐶 − 1

 

𝑖∈𝐶

𝑎𝑖 > 𝑏  

𝑖∈𝐶′

𝑎𝑖 ≤ 𝑏 𝐶′ ⊊ 𝐶
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Knapsack Cover Cuts – Example

• Consider knapsack 3x1 + 5x2 + 8x3 + 10x4 + 17x5 ≤ 24, x ∈ {0,1}5

• A minimal cover is C = {1,2,3,4}

• Resulting cover inequality: x1 + x2 + x3 + x4 ≤ 3

• Lifting

• If x5 = 1, then x1 + x2 + x3 + x4 ≤ 1

• Hence, x1 + x2 + x3 + x4 + 2x5 ≤ 3 is valid

• Need to solve knapsack problem αj := d0 - max{dx | ax ≤ b - aj} to find lifting coefficient for variable xj

• Use dynamic programming to solve knapsack problem
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Cutting Planes – Performance
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MIP Building Blocks

• Presolve

• Tighten formulation and reduce problem size

• Solve continuous relaxations

• Ignoring integrality

• Gives a bound on the optimal integral objective

• Cutting planes

• Cut off relaxation solutions

• Branching variable selection

• Crucial for limiting search tree size

• Primal heuristics

• Find integer feasible solutions



Copyright 2017, Gurobi Optimization, Inc.44

MIP – Branching

objective

P1 P2
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MIP – Branching

objective

P1 P2
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MIP – Branching

objective

P1 P2
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MIP – Branching

objective

P1 P2

another improvement in dual bound
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LP based Branch-and-Bound

Root

Solve LP relaxation:
v=3.5 (fractional)
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LP based Branch-and-Bound

Root
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LP based Branch-and-Bound

Root

Integer

Upper Bound
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Remarks:
(1) GAP = 0   Proof of optimality
(2) In practice:  good quality solution often enough

LP based Branch-and-Bound

G

A

P

Root

Integer

Infeas

Infeas

Lower Bound

Upper Bound

Infeas
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Solving a MIP Model

Solution

Bound

O
b
je

c
ti
v
e

Time
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Branching Variable Selection

• Given a relaxation solution x*

• Branching candidates:

• Integer variables xj that take fractional values

• xj = 3.7 produces two child nodes (x ≤ 3 or x ≥ 4)

• Need to pick a variable to branch on

• Choice is crucial in determining the size of the overall search tree
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Branching Variable Selection

• What’s a good branching variable?

• Superb: fractional variable infeasible in both branch directions

• Great: infeasible in one direction

• Good: both directions move the objective

• Expensive to predict which branches lead to infeasibility or big objective moves

• Strong branching

• Truncated LP solve for every possible branch at every node

• Rarely cost effective

• Need a quick estimate
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Pseudo-Costs

• Use historical data to predict impact of a branch:

• Record cost(xj) = Δobj / Δxj for each branch

• Store results in a pseudo-cost table

• Two entries per integer variable

• Average down cost

• Average up cost

• Use table to predict cost of a future branch

c*=13
x* = 2.7
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Pseudo-Costs

• Use historical data to predict impact of a branch:

• Record cost(xj) = Δobj / Δxj for each branch

• Store results in a pseudo-cost table

• Two entries per integer variable

• Average down cost

• Average up cost

• Use table to predict cost of a future branch

c*=13

c*=20 c*=19

x* = 2.7

down pseudo-cost update:

∆obj/∆x = 7/0.7 = 10

up pseudo-cost update:

∆obj/∆x = 6/0.3 = 20
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Pseudo-Costs

• Use historical data to predict impact of a branch:

• Record cost(xj) = Δobj / Δxj for each branch

• Store results in a pseudo-cost table

• Two entries per integer variable

• Average down cost

• Average up cost

• Use table to predict cost of a future branch

c*=13

c*=20 c*=19

c*=17

pseudo costs:

downcost(x) = 10

upcost(x) = 20

x* = 5.4

down estimate:
c' = 17 + 0.4 ⋅ 10 = 21

up estimate:
c' = 17 + 0.6 ⋅ 20 = 29



Copyright 2017, Gurobi Optimization, Inc.58

Pseudo-Costs Initialization

• What do you do when there is no history?

• E.g., at the root node

• Initialize pseudo-costs [Linderoth & Savelsbergh, 1999]

• Always compute up/down cost (using strong branching) for new fractional variables

• Initialize pseudo-costs for every fractional variable at root

• Reliability branching [Achterberg, Koch & Martin, 2005]

• Do not rely on historical data until pseudo-cost for a variable has been recomputed r times



Copyright 2017, Gurobi Optimization, Inc.59

Branching Rules – Performance
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MIP Building Blocks

• Presolve

• Tighten formulation and reduce problem size

• Solve continuous relaxations

• Ignoring integrality

• Gives a bound on the optimal integral objective

• Cutting planes

• Cut off relaxation solutions

• Branching variable selection

• Crucial for limiting search tree size

• Primal heuristics

• Find integer feasible solutions
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Primal Heuristics

• Try to find good integer feasible solutions quickly

• Better pruning during search due to better bound

• Reach desired gap faster

• Often important in practice: quality of solution after fixed amount of time

• Start heuristics

• Try to find integer feasible solution, usually "close" to LP solution

• Improvement heuristics

• Given integer feasible solution, try to find better solution
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Primal Heuristics Explained on Twitter
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Primal Heuristics – Examples

• Start heuristics

• Rounding heuristics: round LP solution to integral values

• Potentially, try to fix constraint infeasibilities

• Fix-and-dive heuristics: fix variables, propagate, resolve LP

• Feasibility pump: push LP solution towards integrality by modifying objective

• RENS: Solve sub-MIP in neighborhood of LP solution

• Improvement heuristics

• 1-Opt and 2-Opt: Modify one or two variables to get better objective

• Local Branching: Solve sub-MIP in neighborhood of MIP solution

• Mutation: Solve sub-MIP in neighborhood of MIP solution

• Crossover: Solve sub-MIP in neighborhood of 2 or more MIP solutions

• RINS: Solve sub-MIP in neighborhood of LP and MIP solution
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Primal Heuristics – Performance
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Primal Heuristics – Measuring Performance

• Is time to optimality a good measure to assess impact of heuristics?

• Goal of heuristics is to provide good solutions quickly

• Faster progress in dual bound due to additional pruning is only secondary

• Often important for practitioners:

• Find any feasible solution quickly to validate that model is reasonable

• Find good solution in reasonable time frame

• Primal gap: 𝛾𝑝  𝑥 =
𝑐𝑇𝑥∗−𝑐𝑇  𝑥

𝑚𝑎𝑥 𝑐𝑇𝑥∗ , 𝑐𝑇  𝑥

• Primal gap function: 𝑝 𝑡 =  
1, if no incumbent until time 𝑡

𝛾𝑝  𝑥 𝑡 , with  𝑥 𝑡 being incumbent at time 𝑡

• Primal integral: 𝑃 𝑇 =  𝑡=0

𝑇
𝑝 𝑡 𝑑𝑡
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Primal Heuristics – Performance
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Berthold (2014): "Heuristic algorithms in global MINLP solvers"

benchmark data based on SCIP 3.0.2



Putting It All Together
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Conflict Analysis
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Conflict Analysis

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Gurobi Optimizer version 6.0.0 (linux64)

Copyright (c) 2014, Gurobi Optimization, Inc.

Read MPS format model from file /models/mip/roll3000.mps.bz2

Reading time = 0.03 seconds

roll3000: 2295 rows, 1166 columns, 29386 nonzeros

Optimize a model with 2295 rows, 1166 columns and 29386 nonzeros

Coefficient statistics:

Matrix range    [2e-01, 3e+02]

Objective range [1e+00, 1e+00]

Bounds range    [1e+00, 1e+09]

RHS range       [6e-01, 1e+03]

Presolve removed 1308 rows and 311 columns

Presolve time: 0.08s

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - - 0s

0     0 11526.8918    0  207          - 11526.8918     - - 0s

0     0 11896.9710    0  190          - 11896.9710     - - 0s
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Conflict Analysis

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Which open node should be processed next?
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - - 0s

0     0 11526.8918    0  207          - 11526.8918     - - 0s

0     0 11896.9710    0  190          - 11896.9710     - - 0s

...

H  327   218                    13135.000000 12455.2162  5.18%  42.6    1s

H  380   264                    13093.000000 12455.2162  4.87%  41.6    1s

H  413   286                    13087.000000 12455.2162  4.83%  41.4    1s

1066   702 12956.2676   31  192 13087.0000 12629.5426  3.50%  37.2    5s

Conflict Analysis
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Conflict Analysis

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

If node presolve or LP relaxation proves infeasibility of the 

current node:

• Analyze conflict to derive conflict constraint

• Can be used as cutting plane and for node presolve

See Jakob Witzig's talk on Wednesday
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Conflict Analysis

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - - 0s

0     0 11526.8918    0  207          - 11526.8918     - - 0s

0     0 11896.9710    0  190          - 11896.9710     - - 0s

0     0 12151.4022    0  190          - 12151.4022     - - 0s

0     0 12278.3391    0  208          - 12278.3391     - - 0s

...

5485   634 12885.3652   52  143 12890.0000 12829.0134  0.47%  54.5   25s

Cutting planes:

Learned: 4

Gomory: 46

Cover: 39

Implied bound: 8

Clique: 2

MIR: 112

Flow cover: 27

GUB cover: 11

Zero half: 91

Explored 6808 nodes (357915 simplex iterations) in 27.17 seconds

Thread count was 4 (of 8 available processors)
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Conflict Analysis

Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - - 0s

0     0 11526.8918    0  207          - 11526.8918     - - 0s

0     0 11896.9710    0  190          - 11896.9710     - - 0s

...

0     0 12448.7684    0  181          - 12448.7684     - - 0s

H    0     0                    16129.000000 12448.7684  22.8%     - 0s

H    0     0                    15890.000000 12448.7684  21.7%     - 0s

0     2 12448.7684    0  181 15890.0000 12448.7684  21.7%     - 0s

H  142   129                    15738.000000 12450.7195  20.9%  43.8    1s

H  212   189                    14596.000000 12453.8870  14.7%  42.3    1s

H  217   181                    13354.000000 12453.8870  6.74%  42.6    1s

*  234   181              40    13319.000000 12453.8870  6.50%  42.1    1s

H  254   190                    13307.000000 12453.8870  6.41%  41.3    1s

H  284   194                    13183.000000 12453.8870  5.53%  42.6    1s

H  286   194                    13169.000000 12453.8870  5.43%  42.7    1s
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LP Relaxation

Cutting Planes

Node Presolve

Branching
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Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - - 0s

0     0 11526.8918    0  207          - 11526.8918     - - 0s

0     0 11896.9710    0  190          - 11896.9710     - - 0s

...

H    0     0                    15890.000000 12448.7684  21.7%     - 0s

0     2 12448.7684    0  181 15890.0000 12448.7684  21.7%     - 0s

...

1066   702 12956.2676   31  192 13087.0000 12629.5426  3.50%  37.2    5s

1097   724 12671.8285    8  147 13087.0000 12671.8285  3.17%  41.6   10s

1135   710 12732.5601   32  126 12890.0000 12727.1362  1.26%  44.6   15s

3416   887 12839.9880   46  136 12890.0000 12780.7059  0.85%  49.7   20s

5485   634 12885.3652   52  143 12890.0000 12829.0134  0.47%  54.5   25s
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Performance Impact of MIP Solver Components 
(CPLEX 12.5 or SCIP)

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

default vs. DFS [1]

SCIP/CPLEX vs. 

SCIP/Soplex [2]

default vs.

most fractional

Achterberg and Wunderling: "Mixed 

Integer Programming: Analyzing 12 

Years of Progress" (2013)

[1] Achterberg: "Constraint Integer 

Programming" (2007)

[2] http://plato.asu.edu/ftp/milpc.html

Conflict Analysis



Copyright 2017, Gurobi Optimization, Inc.78

Parallelization

• Parallelization opportunities

• Parallel probing during presolve

• Almost no improvement

• Use barrier or concurrent LP for initial LP relaxation solve

• Only helps for large models

• Run heuristics or other potentially useful algorithms in parallel to the root cutting plane loop

• Moderate performance improvements: 20-25%

• Does not scale beyond a few threads

• Solve branch-and-bound nodes in parallel

• Main speed-up for parallel MIP

• Performance improvement depends a lot on shape of search tree

• Typically scales relatively well up to 8 to 16 threads
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Parallelization

• Parallelization issues

• Determinism

• Load balancing

• CPU heat and memory bandwidth

• Additional threads slow down main thread

• Root node does not parallelize well

• Sequential runtime of root node imposes limits on parallelization speed-up

• Amdahl's law

• A dive in the search tree cannot be parallelized

• Parallelization only helps if significant number of dives necessary to solve model
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Parallel MIP – Performance
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Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013)

benchmark data based on CPLEX 12.5, models with ≥ 100 seconds solve time
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No Further Questions? Enjoy Your Coffee Break!


