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Statistical Machine Learning (ML) needs a crossover 
with data and programming abstractions 
 

•  ML high-level languages increase the number of 
people who can successfully build ML applications 
and make experts more effective 

•  To deal with the computational complexity, we need 
ways to automatically reduce the solver costs 

Next 
Generation 

Data 
Science 

High-level 
languages 

Automated 
reduction of  

computational 
costs 

Next 
Generation 

Machine 
Learning 

Take-away message 
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Arms race to deeply 
understand data 
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Bottom line:  
Take your data spreadsheet … 
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Graphical models 

… and apply machine learning 

Gaussian Processes 

Autoencoder,  
Deep Learning and many more … 

Interpretation

t

F (t)

f (t)

Weibull pdf and cdf:

f (t) = bctc-1e-btc

F(t) = 1 - e-btc

therefore:

f (t) = bctc-1 - bctc-1F(t)

thus:
• the Weibull implicitly encodes a subtractive growth process
• growth and decline are polynomial in t
• decline depends on F(t)

Diffusion Models 

Distillation/LUPI 

Big 
Model Small 
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teaches 

Features 

O
bj

ec
ts

 

Big Data Matrix Factorization 

Graph Mining 

Boosting 
Is it really that simple? 
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Kristian Kersting - Thinking Machine Learning 

[Lu, Krishna, Bernstein, Fei-Fei „Visual Relationship Detection“ CVPR 2016] 

Complex data networks abound 

Actually, most data in the world 
stored in relational databases 
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Punshline: Two trends that drive ML 
1.  Arms race to deeply understand data 
2.  Data networks of a large number of formats 

Crossover of ML with data & 
programming abstractions Scaling Uncertainty 

Databases/ 
Logic 

Data 
Mining  

De Raedt, Kersting, Natarajan, Poole, Statistical Relational Artificial Intelligence: Logic, Probability, 
and Computation. Morgan and Claypool Publishers, ISBN: 9781627058414, 2016. 

increases the number of people who can 
successfully build ML applications 

make the ML expert more effective 

It costs considerable human effort to develop, for a 
given dataset and task, a good ML algorithm 
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Symbolic-Numerical 
Solver 

Feature  
Extraction 

Declarative Learning 
Programming 

(Un-)Structured  
Data Sources 

External Databases 

Features and Data Rules 
Features and 
Rules 

Machine Learning Database 
(data, weighted rules, loops and data structures) 
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Inference 
Results 

Feedback/AutoDM 

p 

0.9 

0.6 

Graph Kernels 
Diffusion Processes 
Random Walks 
Decision Trees 
Frequent Itemsets 
SVMs 
Graphical Models 
Topic Models 
Gaussian Processes 
Autoencoder 
Matrix and Tensor 
Factorization 
Reinforcement Learning 
… 

[Ré et al. IEEE Data Eng. Bull.’14; Natarajan, Picado, Khot, Kersting, Ré, Shavlik ILP’14; Natarajan, Soni, Wazalwar, 
Viswanathan, Kersting Solving Large Scale Learning Tasks’16, Mladenov,  Heinrich, Kleinhans, Gonsior, Kersting DeLBP’16, …] 

Thinking Machine Learning 
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Kristian Kersting - Declarative Data Science 
Programming 

This connects the CS communities 

Data Mining/Machine Learning, Databases, AI, Model Checking, 
Software Engineering, Optimization, Knowledge Representation, 
Constraint Programming, Operation Research, … ! 

Jim Gray Turing Award 1998 
“Automated Programming”  

Mike Stonebraker Turing Award 2014  

“One size does not fit all”  



Kristian Kersting  -  Exploiting Symmetries for Modelling and Solving QPs 

[Bratzadeh 2016; Bratzadeh, Molina, Kersting „The Machine Learning Genome“ 2017] 

The ML Genome is a dataset, a knowledge 
base, an ongoing effort to learn and reason 
about ML concepts 

Algorithms 

Compared to 

The Machine Learning Genome 
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Guy van den Broeck  
UCLA 
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Faster modelling 
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Guy van den Broeck  
UCLA 

What about inference? 
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Guy van den Broeck  
UCLA 

No independencies.  
Fully connected.  

22704 states 
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Guy van den Broeck  
UCLA 

A machine will not  
solve the problem 

card 
(1,d2) 

card 
(1,d3) 

card 
(1,pAce) 

card 
(52,d2) 

card 
(52,d3) 

card 
(52,pAce) 

… 
…

 

…
 

… 



Kristian Kersting  -  Exploiting Symmetries for Modelling and Solving QPs 



Kristian Kersting  -  Exploiting Symmetries for Modelling and Solving QPs 

Faster modelling 

Faster solvers 
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Let’s say we want to classify 
publications into scientific disciplines 
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Replace l2- by l1-,l∞-norm in the standard SVM prog. 

Hinführungen zur SVM (Support Vector Machine) Maximum Margin Methode Zusammenfassung

Margin
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Classification using LP SVMs 
[Bennett´99; Mangasarian´99; Zhou, Zhang, Jiao´02, ... ]  
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1 var pred /1; #predicted label for unlabeled instances

2 var slack /1; #the slacks

3 var coslack /2; #slack between neighboring instances

4 var weight /1; #the slope of the hyperplane

5 var b/0; #the intercept of the hyperplane

6 var r/0; #margin

7

8 slack = sum{label(I)} slack(I);

9 coslack = sum{cite(I1,I2),label(I1),query(I2)} slack(I1,I2)

10 + sum{cite(I1 ,I2),label(I2),query(I1)} slack(I1 ,I2)

11

12 #find the largest margin. Here the C’s encode trade -off parameters

13 minimize: -r + C(1) * slack + C(2) * coslack;

14

15 subject to forall {I in query(I)}: pred(I) = innerProd(I) + b;

16 #related instances should have the same labels.

17 subject to forall {I1 , I2 in cite(I1 , I2), label(I1), query(I2)}:

18 label(I1) * pred(I2) + slack(I1, I2) >= r;

19 #the symmetric case

20 subject to forall {I1 , I2 in cite(I1 , I2), label(I2), query(I1)}:

21 label(I2) * pred(I1) + slack(I1, I2) >= r;

22

23 #examples should be on the correct side of the hyperplane

24 subject to forall {I in label(I)}:

25 label(I)*( innerProd(I) + b) + slack(I) >= r;

26 #weights are between -1 and 1

27 subject to forall {J in attribute(_, J)}: -1 <= weight(J) <= 1;

28 subject to : r >= 0; #the margin is positive

29 subject to forall {I in label(I)}: slack(I) >= 0; #slacks are positive

Figure 15: An RLP-SVM model for collective inference in a transductive setting.

the best performance but to illustrate the ease of the relational mathematical
programming approach, we chose the following, rather basic approach. We
add constraints which favor that unlabeled instances have the same label as
their labeled neighbors. To account for contradicting examples, we introduce
slack variables for these constraints and add them to the objective with a
separate penalty parameter. This results in the TC-RLP-SVM model shown
in Fig. 15. Here, the new predicate pred/2 denotes the predicted label for
unlabeled instances. The LogKB gets two new predicates:

C(1) = 0.0021. C(2) = 0.0031.

cite (89547 , 1132385). cite (89547 , 1152379). ...

query (1128959). query (16008). ...

The cite/2 predicate encodes citation information, and the query/1 pred-
icate marks unlabeled instances whose labels are to be inferred. We notice
that the parameters in the objective play a di↵erent role in the TC-RLP-
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[Kersting, Mladenov, Tokmakov AIJ´15, Mladenov, Heinrich, Kleinhans, Gonsio, Kersting DeLBP´16] 

Logically parameterized LP variable 
(set of ground LP variables) 

Logically parameterized LP constraint 

Logically parameterized LP objective 

http://www-ai.cs.uni-dortmund.de/weblab/static/RLP/html/ 

Write down the LP-SVM in „paper form“. 
The machine compiles it into solver form. 

Embedded within Python s.t. loops and rules can be used 

Relational Data and Program Abstractions 



Kristian Kersting  -  Exploiting Symmetries for Modelling and Solving QPs 

But wait, publications are citing 
each other. OMG, I have to use 
graph kernels! 

REALLY? 
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1 var pred /1; #predicted label for unlabeled instances

2 var slack /1; #the slacks

3 var coslack /2; #slack between neighboring instances

4 var weight /1; #the slope of the hyperplane

5 var b/0; #the intercept of the hyperplane

6 var r/0; #margin

7

8 slack = sum{label(I)} slack(I);
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11

12 #find the largest margin. Here the C’s encode trade -off parameters

13 minimize: -r + C(1) * slack + C(2) * coslack;

14

15 subject to forall {I in query(I)}: pred(I) = innerProd(I) + b;

16 #related instances should have the same labels.

17 subject to forall {I1 , I2 in cite(I1 , I2), label(I1), query(I2)}:

18 label(I1) * pred(I2) + slack(I1, I2) >= r;

19 #the symmetric case

20 subject to forall {I1 , I2 in cite(I1 , I2), label(I2), query(I1)}:

21 label(I2) * pred(I1) + slack(I1, I2) >= r;

22
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29 subject to forall {I in label(I)}: slack(I) >= 0; #slacks are positive

Figure 15: An RLP-SVM model for collective inference in a transductive setting.

the best performance but to illustrate the ease of the relational mathematical
programming approach, we chose the following, rather basic approach. We
add constraints which favor that unlabeled instances have the same label as
their labeled neighbors. To account for contradicting examples, we introduce
slack variables for these constraints and add them to the objective with a
separate penalty parameter. This results in the TC-RLP-SVM model shown
in Fig. 15. Here, the new predicate pred/2 denotes the predicted label for
unlabeled instances. The LogKB gets two new predicates:

C(1) = 0.0021. C(2) = 0.0031.

cite (89547 , 1132385). cite (89547 , 1152379). ...

query (1128959). query (16008). ...

The cite/2 predicate encodes citation information, and the query/1 pred-
icate marks unlabeled instances whose labels are to be inferred. We notice
that the parameters in the objective play a di↵erent role in the TC-RLP-
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No kernel, the structure is expressed within the constraints! 

Citing papers share topics 

Logical query defines scope of abstract constraint 

Relational Data and Program Abstractions 
[Kersting, Mladenov, Tokmakov AIJ´15, Mladenov, Heinrich, Kleinhans, Gonsio, Kersting DeLBP´16] 
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HOW CAN THE MACHINE     NOW HELP 
TO REDUCE THE SOLVER COSTS? 

OK, we have now a high-level, declarative 
language for mathematical programming.  
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Big  
Model 

Run Solver 

Small 

Model 

automatically 
compressed 

Run Solver 

[Mladenov, Ahmadi, Kersting AISTATS´12, Grohe, Kersting, Mladenov, Selman ESA´14, 
Kersting, Mladenov, Tokmatov AIJ´17] 

Lifted Mathematical Programming 
Exploiting computational symmetries 
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View the mathematical program as a colored graph  

Lifted Mathematical Programming 
Exploiting computational symmetries 
[Mladenov, Ahmadi, Kersting AISTATS´12, Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, 
Mladenov, Tokmatov AIJ´17] 

Reduce the MP by running Weisfeiler-Lehman  
on the MP-Graph 



Kristian Kersting  -  Exploiting Symmetries for Modelling and Solving QPs 

Weisfeiler-Lehman (WL) aka  
“naive vertex classification” 
Basic subroutine for GI testing 
Computes LP-relaxations of GA-ILP,                    aka. 

fractional automorphisms 
Quasi-linear running time O((n+m)log(n)) when                    

using asynchronous updates [Berkholz, Bonsma, Grohe ESA´13] 

Part of graph tool SAUCY [See e.g. Darga, Sakallah, Markov DAC´08] 

 

Has lead to highly performant graph kernels                   
[Shervashidze, Schweitzer, van Leeuwen, Mehlhorn, Borgwardt JMLR 12:2539-2561 ´11] 

Can be extended to weighted graphs/real-valued matrices   
[Grohe, Kersting, Mladenov, Selman ESA´14] 

Actually a Frank-Wolfe optimizer and can be viewed as 
recursive spectral clustering [Kersting, Mladenov, Garnett, Grohe AAAI´14] 
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Color nodes initially with the same color, 
say red 

Color factors distinctively according  to 
their equivalences. For instance, assuming 
f1 and f2 to be identical and B appears at the  
second position within both, say blue 

[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17] 

Compression: Coloring the graph 
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Compression: Pass colors around 

1.  Each factor collects the colors of its neighboring nodes 

[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17] 
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1.  Each factor collects the colors of its neighboring nodes 
2.  Each factor „signs“ its color signature with its own color 

Compression: Pass colors around 
[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17] 
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1.  Each factor collects the colors of its neighboring nodes 
2.  Each factor „signs“ its color signature with its own color 
3.  Each node collects the signatures of its neighboring factors 

Compression: Pass colors around 
[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17] 
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1.  Each factor collects the colors of its neighboring nodes 
2.  Each factor „signs“ its color signature with its own color 
3.  Each node collects the signatures of its neighboring factors 
4.  Nodes are recolored according to the collected signatures 

Compression: Pass colors around 
[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17] 
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1.  Each factor collects the colors of its neighboring nodes 
2.  Each factor „signs“ its color signature with its own color 
3.  Each node collects the signatures of its neighboring factors 
4.  Nodes are recolored according to the collected signatures 
5.  If no new color is created stop, otherwise go back to 1 

Compression: Pass colors around 
[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17] 
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Big  
Model 

Run Solver 

Small 

Model 

automatically 
compressed 

Run Solver 

[Mladenov, Ahmadi, Kersting AISTATS´12, Grohe, Kersting, Mladenov, Selman ESA´14, 
Kersting, Mladenov, Tokmatov AIJ´17] 

Lifted Mathematical Programming 
Exploiting computational symmetries 

A,C 

B 
f1, f2 

Weisfeiler-Lehman in  
quasi-linear time  
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The more observed the more lifting 
Faster end-to-end even in the light of  Gurobi‘s fast pre-solving heuristics 

Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17 
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Dense vs. sparse is not enough, 
solvers need to be aware of 
symmetries 

As also noted by Stephen Boyd 
[Boyd, Diaconis, Parrilo, Xiao: Internet Mathematics 2(1):31-71´05] 
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Why does this work? 

Feasible region  
of LP and the 
objective vectors 

Span of the fractional 
auto-morpishm of the LP 

Projections of the feasible 
region onto the span of 
the fractional auto-
morphism 
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Compute Equitable 
Partition (EP) of the 
LP using WL 

Intuitively, we group together variables resp. 
constraints that interact in the very same way 
in the LP.  

9 

Compute$Equitable$
Par++ons$of$the$LP$
using$WL$

IntuiCvely,$we$group$together$variables$
resp.$constraints$that$interact$in$the$
very$same$way$in$the$LP.$
$

Figure 7: Using symmetry to speed up linear programming: (a) the feasible region of LP
and the objective vector (in pink); (b) the span of the fractional automorphism of the LP
(grey); (c) the lifted LP is obtained by projecting the feasible region onto the span of the
fractional automorphism.

5.2. Equitable Partitions and Fractional Automorphisms

Let L = (A,b, c) be an LP withA 2 Rm⇥n, that is, we havem constraints
and n variables. In the following, we aim to partition the variables and
constraints into mutually-exclusive classes, which behave identically. Thus
we define a partition of the LP to be the set P = {P1, . . . , Pp

;Q1, . . . , Qq

},
where the sets [p

i=1Pi

= {1, . . . , n} , P
i

\P
j

= ;, partition the variables, and
the sets [q

i=1Qi

= {1, . . . ,m} , Q
j

\Q
j

= ;, partition the constraints of the
LP into (equivalence) classes. Hence, we also require that P

i

\Q
j

= ; for all
appropriate i, j.

We say that a partition P = {P1, . . . , Pp

;Q1, . . . , Qq

} of L = (A,b, c) is
equitable if the following conditions hold.

i. For any two variables i, j in the same class P , c
i

= c
j

. For any two
constraints i, j in the same class Q, b

i

= b
j

;

ii. For any two variables i, j in the same class P , and for any constraint
class Q and real number c:

|{k 2 Q | A
ik

= c}| = |{l 2 Q | A
jl

= c}| .
Analogously, for any two constraints i, j in the same class Q, and for
any constraint class P and real number c:

|{k 2 P | A
ki

= c}| = |{l 2 P | A
lj

= c}| .

28

Partition of  
LP variables 

Partition of  
LP constraints 

$
$

•  (Same$objecCve$resp.$bound)$$
–  For$i$and$j$in$class$P$it$holds$ci=cj$$$
–  For$i$and$j$in$class$Q$it$holds$bi=bj$$

•  (Same$InteracCons)$$
–  For$i$and$j$in$class$P$and$for$any$class$Q$$
$
–  For$i$and$j$in$class$Q$and$for$any$class$P$$

Figure 7: Using symmetry to speed up linear programming: (a) the feasible region of LP
and the objective vector (in pink); (b) the span of the fractional automorphism of the LP
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constraints into mutually-exclusive classes, which behave identically. Thus
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} of L = (A,b, c) is
equitable if the following conditions hold.
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any constraint class P and real number c:

|{k 2 P | A
ki

= c}| = |{l 2 P | A
lj

= c}| .

28

Partition of  
LP variables 

Partition of  
LP constraints 

|{k 2 Q | Aik = c}| = |{l 2 Q | Ajl = c}|

|{k 2 P | Aki = c}| = |{l 2 P | Alj = c}|
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number$of$constraints$in$Q$where$an$LP$
variable$i$in$P$parCcipates$with$coefficient$c$
should$be$equal$for$all$other$j$in$P.$$$

Compute$Equitable$
Par++ons$of$the$LP$
using$WL$

Frac+onal$Automorphsims$of$LPs$
The$EP$induces$an$fracConal$automorphism$of$
the$coefficient$matrix$
$
$
where$$$$$$$$$$and$$$$$$$$$$are$doubly6stochas+c$
matrices$(relaxed$form$of$automorphism).$

XQA = AXP

XQ XP

(XP )ij =

(
1/|P | if both vertices i, j are in the same P ,

0 otherwise.

(XQ)ij =

(
1/|Q| if both vertices i, j are in the same Q,

0 otherwise
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Preserve$Solu+ons$
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By$inducCon,$one$can$show$that$lec7mulCplying$with$a$
doubly7stochasCc$matrix$preserves$direcCons$of$
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If x* is optimal, then Xpx* is optimal, too. 
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Frac+onal$Automorphisms$
Preserve$Solu+ons$

If$$$$$$$is$op+mal,$then$$$$$$$$$$$$$$is$op+mal,$too.$
Since$by$construncCon$$$$$$$$$$$$$$$$$$$$$$$$$$$and$hence$$

XPx
⇤

x

⇤

c

T (XPx) = c

T
x

cTXP = cT

What$have$we$established$so$far?$

Instead$of$considering$the$original$LP$$
$
it$is$sufficient$to$consider$
$
$

i.e.$we$„average“$parts$of$the$polytop.$$$$
$

(A,b, c)

(AXP ,b,XP
T c)

But$why$is$this$dimensionality$reduc+on?$

Dimensionality$Reduc+on$
The$doubly7stochasCc$matrix$$$$$$$$$can$be$wriren$
as$$
$
$

BiP =

(
1p
|P |

if vertex i belongs to part P ,

0 otherwise.

XP

XP = BBT

Dimensionality$Reduc+on$
The$doubly7stochasCc$matrix$$$$$$$$$can$be$wriren$
as$$
$
$
Since$the$column$space$of$B$is$equivalent$to$the$
span$of$$$$$$$$$,$it$is$actually$sufficient$to$consider$
only$$
$

BiP =

(
1p
|P |

if vertex i belongs to part P ,

0 otherwise.

(ABP ,b,B
T
P c)

XP

XP = BBT

XP

Fractional Automorphisms 
Preserve Solutions 
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But why is this dimensionality reduction? 
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This is of reduced size, and actually we can also drop 
any constraint that becomes identical 
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WL induces a Fractional 
Automorphism of the LP 

Feasible region  
of LP and the 
objective vectors 

Span of the fractional 
auto-morpishm of the LP 

Projections of the feasible 
region onto the span of 
the fractional auto-
morphism 
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Approximate probabilistic   
inference closely connected to LPs 

Marginal Polytope 

Relaxed Polytope 

Objective Function 
Symmetrized Subspace 
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[Mladenov, Globerson, Kersting UAI 2014; Mladnov, Kersting UAI 2015] 

lifting 

refine 

Attention: For special-purpose solvers such as message-
passing (coordinate descent, ) for probabilistic inference we 
may have to reparameterize the lifted model 

Lifted Optimization 
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Reparameterized BP ?

Reparameterized 
Lifting as preprocessing 
Run any existing MP solver 

RMPLP 

RCE 

LBP 

LCE 

BP 

Modified MP 

Beliefs 

Pseudo Beliefs 
MAP-LP Standard Lifted 

MPLP  
and Co 

Concave 
energies 

LMPLP 

Lifted probabilistic  
inference 

Inference in a smaller,  
reparameterized model 

[Mladenov, Globerson, Kersting UAI 2014; Mladnov, Kersting UAI 2015] 

= 
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Holds also for Convex QPs 
Mladenov, Kleinhans, Kersting AAAI´17 

 On par with state-of-the-art by just four lines of code 

CORA entity resolution 

3.
6%

 6.
4%

 

the higher, the better 

Papers that cite each other should be on the same side of the hyperplane 
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A geometric interpretation 

For QPs, a fractional automorphism is a 
rotation and scaling (of the semidefinite factors B of the Gram matrix) 

−6 −4 −2 0 2 4 6

−6
−2

0
2

4
6

x[,1]

x[
,2
]

Mladenov, Kleinhans, Kersting AAAI´17 

automorphism 
fractional automorphism 

Relaxed by scaling 



Kristian Kersting  -  Exploiting Symmetries for Modelling and Solving QPs 

No, we can have approximate 
fractional automorphisms (for SVMs) 
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x[
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]
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−6
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x[
,2
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Mladenov, Kleinhans, Kersting AAAI´17 

   Whitening  
+ K-means  
   of sorted     
   distance  
   vectors 

Indeed, one may argue that the (rotational) automorphism group of most Euclidean 
datasets consists of the identity transformation alone:  symmetries of a given 
dataset B can easily be destroyed by slightly perturbing the body. 

No symmetry-based ML? 
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This provides a symmetry  
argument  for known data  
reduction methods used for SVMs 
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Mladenov, Kleinhans, Kersting AAAI´17 
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Approximately Lifted SVM: 
Cluster data points via K-means 
using sorted distance vectors. 
Solve SVM on cluster 
representatives only 

PAC-style generalization bound:  
the approximately lifted SVM will very likely 
have a small expected error rate if it has a 
small empirical loss over the original dataset. 

M
N

IS
T 

im
ag

e 
cl

as
si

fic
at

io
n 

Original SVM 

Original SVM 
37800 

38
0x

 fa
st

er
 

the higher, the 
better 

the lower, the 
better 

Symmetry-based Data 
Programming: fractional 
autom. of label-preserving 
data transformations  

Same should work for deep networks 

Mladenov, Kleinhans, Kersting AAAI´17 
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Algebraic  
Decision Diagrams 

Formulae parse 
trees 

Matrix Free 
Optimization 

( è ) + 

And, there are other “-02”, “-03”, … flags,  
e.g  symbolic-numerical interior point solvers 

[Mladenov, Belle, Kersting AAAI´17] 

Applies to QPs but here illustrated on MDPs for a factory agent which must paint two objects and connect them. The 
objects must be smoothed, shaped and polished and possibly drilled before painting, each of which actions require a 
number of tools which are possibly available. Various painting and connection methods are represented, each having an 
effect on the quality of the job, and each requiring tools. Rewards (required quality) range from 0 to 10 and a discounting 
factor of 0. 9 was used used 

>4.8x faster 

All this opens the general 
machine learning toolbox for 
declarative machines:  
feature selection, least-squares 
regression, label propagation, ranking, 
collaborative filtering, community 
detection, deep learning, …  
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SYMMETRY-BASED ML AND 
DATA PROGRAMMING 
[GENS, DOMINGOS NIPS 2014; RATNER ET AL. NIPS 2016] 

Relations and (fractional) automorphisms 
are a natural foundation for 

§  Learning (rich) representations is a central problem of 
machine learning 

§  (Fractional) symmetry / group theory provide a natural 
foundation for learning representations 

§  Symmetries = “unimportant” variants of data (graphs, 
relational structures, …) 

§  “Unimportant” variants programmed via declarative rules 
§  Let’s move beyond QPs: CSPs, SDPs, Deep Networks, … 
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THINKING MACHINE LEARNING 
Together with high-level languages 

•  Shortens data science code to make ML techniques faster to 
write and easier to understand 

•  Reduces the level of expertise necessary to build ML 
applications 

•  Facilitates the construction of more sophisticated ML that 
incorporate rich domain knowledge and separate queries 
from underlying code 

•  Supports the construction of integrated ML machines thank 
think across a wide variety of domains and tool types 

•  Accelerates ML machines by exploiting language properties, 
compression, and compilation 
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