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Relational QPs

Exploiting Symmetries for Modelling and Solving QPs
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Take-away message

Statistical Machine Learning (ML) needs a crossover
with data and programming abstractions

Next Automated
High-level Generation reduction of

languages Machine computational
\ Learning costs

* ML high-level languages increase the number of
people who can successfully build ML applications
and make experts more effective

* Jo deal with the computational complexity, we need
ways to automatically reduce the solver costs

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n
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Arms race to deeply
understand data
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Bottom line:
Take your data spreadsheet ...

Features

Objects

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n
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... and apply machine learning
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Complex data networks abound

[Lu, Krishna, Bernstein, Fei-Fei ,Visual Relationship Detection“ CVPR 2016]

(ﬁVI SUA LG E N O M E About Download DataAnalysis Paper Explore

Visual Genome is a dataset,
knowledge base, an ongoin;
connect structured image ct
language.

Explore our data: ‘

throwing frisbee, helping, angry

ActuaIIy most data in the world i
stored In relatlonal databases on

2. 8 Million Attributes
2.3 Million Relationships
Everything Mapped to Worc

Read our paper.
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De Raedt, Kersting, Natarajan, Poole, Statistical Relational Artificial Intelligence: Logic, Probability,
and Computation. Morgan and Claypool Publishers, ISBN: 9781627058414, 2016.

Punshline: Two trends that drive ML o

Artificial Intelligence
Legic. Probabilicy,
and Cemputatsan

1. Arms race to deeply understand data
2. Data networks of a large number of formats g

It costs considerable human effort to develop, for a

given dataset and task, a good ML algorithm

Crossover of ML with data &

programming abstractions

make the ML expert more effective

Databases/

increases the number of people who can i

successfully build ML applications

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs
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Thinking Machine Learning

Feature Declarative Learning Symbolic-Numerica
Extraction Programming Solver
(Un-)Structured l
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[Ré et al. IEEE Data Eng. Bull.”14; Natarajan, Picado, Khot, Kersting, Ré, Shavlik ILP’14; Natarajan, Soni, Wazalwar,
Viswanathan, Kersting Solving Large Scale Learning Tasks’16, Mladenov, Heinrich, Kleinhans, Gonsior, Kersting DeLBP’16, ...]




This connects the CS communities

Jim Gray Turing Award 1998 Mike Stonebraker turing Award 2014
“Automated Programming” “One size does not fit all”

Data Mining/Machine Learning, Databases, Al, Model Checking,
Software Engineering, Optimization, Knowledge Representation,
Constraint Programming, Operation Research, ... !



GIIVLIGEVE B UWOLHGHIEAN TSI pTvyianiinimny - TP T OWIAIANT INNT TS el e o ot b TITIDOT s I oTonue

The Machine Learning Genome

[Bratzadeh 2016; Bratzadeh, Molina, Kersting ,,The Machine Learning Genome" 2017]
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A simple example -

What is the problem that the first card of a
randomly shuffled deck with 52 cards is

an Ace?

Y |

How would a machine solve this?

One option is to treat this as an inference
problem within in a graphical model, solved
approximately using some mathematical

program!




A s i m p I e exa m p I e % Guy van den Brosck

card
S (1,pAce)
i (52,pAce)




A s i m p I e exa m p I e I Guy van den Brosck

124




©
=
>
@)
d
®
=
—
>
e
b
wd
=
©
S
wd
®)
c
@)
d
=

'Sl
L
-
[ -
)
i w
i

\




Faster modelling |

Let’s use programminc)eloSticciions
such as e.g.

w1:V p,x,y: card(P,X),card(P,Y)=x=y |
jw2:Ve x,y card(X,C),card(Y, C)=>x—y

TS 8 |\

We do not want to write down all
the rules!




A s i m p I e exa m p I e I Guy van den Brosck

124




A simple example g =

~No independencies. .
Fully connected. -
22704 gtates




A Simple example o v s

s’




Positions and cards are
exchangable but the machine is
not aware of these symmetries
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Faster modelling =

Let’s use programmiicfelustiEeiions
together with symmeiay=a @m]@] lenguage= ¢

wWealre Solvers .
o Faster solvers
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Let’s say we want to classify
publications into scientific disciplines




Classification usmg LP SVMs @ e

’0@). DARMSTADT
[Bennett'99; Mangasarian'99; Zhou, Zhang, Jiao'02, .

He={%| (%, 8)+ po =0}

Replace |- by |;-1,-norm in the standard SVM prog.

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n



Relational Data and Program Abstractions

[Kersting, Mladenov, Tokmakov AlJ"15, Mladenov, Heinrich, Kleinhans, Gonsio, Kersting DeLBP "16]

1 var pred/1; #predicted label for unlabeled instances

:E 2 var slack/1; #the slacks
lack/2; # - = =

3, e ettt ,..o Logically parameterized LP variable
Qo var B/O; #the (set of ground LP variables)
] 6 var r/0; #mar

7
go) 8§ slack = sum{label (I)} slack(I);
(¢b) 9 coslack = sum{cite(I1,I2),label(Il),query(I2)} slack(I1,I2)
= i i i i k(I1,I2)
5 | Logically parameterized LP objective

TZ # I TITON_ o Malglll. IHere Cle C e-off parameters

(=]

13 minimize: -r + C(1) * slack + C(2) * coslack;

http://www-ai.cs.uni-dortmund.de/weblab/static/RLP/html/
RELOOP: A Toolkit for Relational Convex Optimization

Embedded within Python s.t. loops and rules can be used
23 #examples should be on the correct side of the hyperplane
24 subject to forall {I in label(I)}:
25 label (I)*(innerProd(I) + b) + slack(I) >= r;

26 #weights are between -1 Eﬂg_l____—_——\\

27 subject to for
28 subject to : | Logically parameterlzed LP constraint ]
29 subject to for o O TOCITT OIS P YT T UTI VT




But wait, publications are citing
each other. OMG, | have to use
graph kernels!

|f‘l —
=

. 2 e

.
REALLY?




Relational Data and Program Abstractions

[Kersting, Mladenov, Tokmakov AlJ"15, Mladenov, Heinrich, Kleinhans, Gonsio, Kersting DeLBP"16]

Collective
constraints

Lifted LP-SVM

© 00 N O Ok W N

var pred/1; #predicted label for unlabeled instances
var slack/1; #the slacks

var coslack/2; #slack between neighboring instances

var weight/1; #the slope of the hyperplane

var b/0; #the intercept of the hyperplane

var r/0; #margin

slack = sum{label(I)} slack(I);

coslack = sum{cite(I1,I2),label(I1),query(I2)} slack(I1,I2)

[ Logical query defines scope of abstract constraint ]

T2
13

15
16
17
18
19
20
21

# 1L 111U LIl

minimize: -r

subject to forall {I in
#related instances should

Irc CIIe U S elicoadce L adc Ol1 paldllc cers

C(2) * coslack;

Citing papers share topics
) t+ bj

)}: pred(I) = 1innerPro
he same labels.

subject to forall {I1, I2 in cite(Il, I2), label(Il), query(I2)}:
label (I1) * pred(I2) + slack(Il, I2) >= r;

#the symmetric case

subject to forall {Il, I2 in cite(I1l, I2), label(I2), query(I1l)}:
label (I2) * pred(I1l) + slack(Il, I2) >= r;

25
26
27
28
29

No kernel, the structure is expressed within the constraints!

J J .

label(I)*(innerProd(I) + b) + slack(I) >= r;

#weights are between -1 and 1
subject to forall {J in attribute(_, J)}: -1 <= weight(J) <= 1;

subject to : r >= 0;

#the margin is positive

subject to forall {I in label(I)}: slack(I) >= O0; #slacks are positive




OK, we have now a high-level, declarative
language for mathematical programming.

HOW CAN THE MACHINEKﬁyNOW HELP
TO REDUCE THE SOLVER COSTS?

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs



Lifted Mathematical Programming

Exploiting computational symmetries

[Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA"14,
Kersting, Mladenov, Tokmatov AlJ"17]

automatically
compressed

Big

Model

Small

Model

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n
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Lifted Mathematical Programming

Exploiting computational symmetries

[Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA 14, Kersting,
Mladenov, Tokmatov AlJ"17]

max, , regs 0T + 0y + 1z T Yy z e

C

101 17 .
-1 0 0 ‘l" _ |0 =
o -1 ollY]=1o0
Z
1 1 -1 —1
L . A b

View the mathematical program as a colored graph

s.t.

€I

Y

z

Reduce the MP by running Weisfeiler-Lehman
on the MP-Graph

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs




SE 7 TECHNISCHE
/%) UNIVERSITAT

Weisfeiler-Lehman (WL) aka

“naive vertex classification” ¢ o® ®

Basic subroutine for Gl testing

€y
Computes LP-relaxations of GA-ILP, P
fractional automorphisms Q)
@

Quasi-linear running time O((n+m)log(n)) when
using asynchronous updates

Part of graph tool SAUCY

Has lead to highly performant graph kernels
Can be extended to weighted graphs/real-valued matrices

Actually a Frank-Wolfe optimizer and can be viewed as
recursive spectral clustering

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n
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Compression: Coloring the graph

[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS 12,
Grohe, Kersting, Mladenov, Selman ESA"14, Kersting, Mladenov, Tokmatov AlJ"17]

Color nodes initially with the same color,

(a) say red
i Color factors distinctively according to
(8) their equivalences. For instance, assuming
f, and f, to be identical and B appears at the
f, second position within both, say blue

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n



Compression: Pass colors around

[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS 12,
Grohe, Kersting, Mladenov, Selman ESA"14, Kersting, Mladenov, Tokmatov AlJ"17]

1. Each factor collects the colors of its neighboring nodes

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n
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Compression: Pass colors around

[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS 12,
Grohe, Kersting, Mladenov, Selman ESA"14, Kersting, Mladenov, Tokmatov AlJ"17]

1. Each factor collects the colors of its neighboring nodes
2. [Each factor ,signs” its color signature with its own color

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n
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Compression: Pass colors around

[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS 12,
Grohe, Kersting, Mladenov, Selman ESA"14, Kersting, Mladenov, Tokmatov AlJ"17]

1. Each factor collects the colors of its neighboring nodes
2. [Each factor ,signs” its color signature with its own color
3. Each node collects the signatures of its neighboring factors

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n



Compression: Pass colors around

[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS 12,
Grohe, Kersting, Mladenov, Selman ESA"14, Kersting, Mladenov, Tokmatov AlJ"17]

1. Each factor collects the colors of its neighboring nodes
2. [Each factor ,signs” its color signature with its own color
3. Each node collects the signatures of its neighboring factors
4

Nodes are recolored according to the collected signatures

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n



Compression: Pass colors around

[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS 12,
Grohe, Kersting, Mladenov, Selman ESA"14, Kersting, Mladenov, Tokmatov AlJ"17]

1. Each factor collects the colors of its neighboring nodes

2. [Each factor ,signs” its color signature with its own color

3. Each node collects the signatures of its neighboring factors
4. Nodes are recolored according to the collected signatures
5. If no new color is created stop, otherwise go back to 1



Lifted Mathematical Programming

Exploiting computational symmetries

[Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA"14,
Kersting, Mladenov, Tokmatov AlJ"17]

Weisfeiler-Lehman in
quasi-linear time

automatically
compressed

Big

Model

Model

Run Solver Run Solver

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n



Grohe, Kersting, Mladenov, Selman ESA'14, Kersting, Mladenov, Tokmatov AlJ"17

107 — TECHNISCHE
= original 1 . UNIVERSITAT
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1()1. — (‘U]()ll]' l'(‘ﬁl]('l]l(‘]lr | MargOUt s
z ILPs with T
é 10% 1 - 0.95- B
: . symmetries
- 09— —
1071} I d
(relaxed)
< 0.85— _|
h £
107% 10 20 30 40 50 L i
Problem instance
—— Vanilla SVM
0.75+ —— wvRkN I
n .1 n : "\:ﬁ\l
Collective Classification o =

10 20 30 P40 cof iO " SIO 70 80 90
Cora (most common vs. rest)
o 1.00 W 10 25 - : -
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Percent of observed labels Parameter pair Ground Time, [s]

The more observed the more lifting
Faster end-to-end even in the light of Gurobi‘s fast pre-solving heuristics

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n



[Boyd, Diaconis, Parrilo, Xiao: Internet Mathematics 2(1):31-71°05]

As also noted by Stephen Boyd

Dense vs. sparse is not enough,
solvers need to be aware of
symmetries




)

DN QRN
Projections of the feasible
region onto the span of
the fractional auto-
morphism

Feasible region

objective vectors

Span of the fractional
auto-morpishm of the LP
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[Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA"14,
Kersting, Mladenov, Tokmatov AlJ"15]

x z
. Yy G

Compute Equitable

Partition (EP) of the —
LP using WL -
A b

z

P:{P17-°')PP;Q17°”7QQ}

Partition of Partition of
LP variables LP constraints

Intuitively, we group together variables resp.
constraints that interact in the very same way
in the LP.

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n
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Fractional Automorphisms of LPs

The EP induces a fractional automorphism of the
coefficient matrix A

XoA = AXp

where X, and X are doubly-stochastic matrixes (relaxed form of automorphism)

1/|P| if both vertices i, j are in the same P,
(Xp)ij = :

0 otherwise.

1/|Q| if both vertices i, j are in the same @),
(Xq)ij = .

0 otherwise

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n
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Fractional Automorphisms
Preserve Solutions

S

If x is feasible, then X x is feasible, too.

By induction, one can show that left-multiplying with a
double-stochastic matrix preserves directions of
iInequalities; they are averagers. Hence,

AXSijQAXSXQb@AXpXSb

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n
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Fractional Automorphisms
Preserve Solutions

If X" is optimal, then X x" is optimal, too.

T

Since by construnction CTXP — ¢~ and hence

c! (Xpx)=clx

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n
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What have we established so far?

Instead of considering the original LP
(A, b, c)
It is sufficient to consider

(AXP7 ba XPTC)

l.e. we “average” parts of the polytope.

But why is this dimensionality reduction?

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n
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Dimensionality Reduction £ iy

The doubly-stochastic matrix X p can be written

as Xp =BB"
B.p — \/T?I if vertex ¢ belongs to part P,
0 otherwise.

Since the column space of B is equivalent to the
span of X p, itis actually sufficient to consider

only
(ABp,b,Bic)

This is of reduced size, and actually we can also drop

any constraint that becomes identical

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs
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Projections of the feasible
region onto the span of
the fractional auto-
morphism

Feasible region

objective vectors

WL induces a Fractional

Automorphism of the LP
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Approximate probabilistic \
inference closely connected to LPs

X € arg max { S 0 (z) + 3 Hst(ajs,a:t)}

xeXN L gy (s,t)EE
Objective Function

Relaxed Polytope

Marginal Polytope

Kristian Kersting - Exploiting Symmetries for Modelling and Solving QPs n



<75 TECHNISCHE

&

§AE_: ,)ﬂ -
& ") UNIVERSITAT
%) DARMSTADT

Lifted Optimization

Attention: For special-purpose solvers such as message-
passing (coordinate descent, ) for probabilistic inference we
may have to reparameterize the lifted model

O

@—o—o lifting

refine
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Lifted probabilistic _ Inference in a smaller, ¢ - sz
inference reparameterized model

Reparameterized BP ?
I \\
i RCE
! Reparameterized
1 Lifting as preprocessing
i Run any existing MP solver
i RMPLP
Beliefs BP LBP
Concave LCE
energies
MPLP LMPLP
and Co Modified MP

Pseudo Beliefs
MAP-LP Standard Lifted
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* .
Holds also for Convex QPs * =/8™eer /()
Mladenov, Kleinhans, Kersting AAAI"17 D = {aj : A:c < b}

#query for the transductive constraint
linked(I1, I2) = label(Il) & query(I2) & (cite(Il, I2) | cite(I2, I1))
0.94 CORA entity resolution

#inline definitions 0.92 T-I TC-QP-SVM | I

slacks = sun{I in labeled(I)} slack(I); 0.90 I-I Tcpsvm o T |

coslacks = sum{I1, I2 in linked(I1, I2)} slack(I1,I2) >0.88 - ' z
|© B =)

© 0.86 “"[I /1

#QUADRATIC OBJECTIVE O 0.84| I the higher, the better

minimize: sum{J in feature(I,J)} weight(J)**2 + cl * sla £ 0.82] I I
0.80 I T1 oqprswm

#labeled examples should be on the correct side 0.78! I I LP-SVM

subject to forall {I in labeled(I)}: labeled(I)*predict( 0.76,

20 40 60 80 100
Percent of observed labels

On par with state-of-the-art by just four lines of code
#TRANSDUCTIVE PART
#cited instances should have the same labels.

subject to forall {I1, I2 in linked(I1, I2)}: labeled(I1) * predict(I2) >= 1 - slack(Il, I2);
subject to forall {I1, I2 in linked(I1, I2)}: coslack(Il, I2) >= 0; #coslacks are positive

Papers that cite each other should be on the same side of the hyperplane
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A geometric interpretation
For QPs, a fractional automorphism is a
rOtation and Scaling (of the semidefinite factors B of the Gram matrix)

fractional automorphism
automorphlsm H Relaxed by scaling

o 0 0 g
°®
© - .o 0.
°®
Y ° ‘. o
o °®
°® °®
o °® s ©
o - o o o
(] L ®
°® °®
N | e ° °
| °® °®
°® ° ®
° °. °®
‘. ®oo00® Y
© ° °®
| Y ()
o0 ®

-6 -4 -2 0 2 4 6
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No symmetry-based ML?

Indeed, one may argue that the (rotational) automorphism group of most Euclidean
datasets consists of the identity transformation alone: symmetries of a given
dataset B can easily be destroyed by slightly perturbing the body.

No, we can have approximate
fractional automorphisms (for SVMs)

§Cf@‘/@ UNIVERSITAT
& 9
%' DARMSTADT

S

Mladenov, Kleinhans, Kersting AAAI"17 e L
© @
n L] ﬁ- ] “
Whitening o~ "

+ K-means 7 . )
of sorted _[]° % & = °
distance . * N
vectors ol . §

l <

-6 -4 -2 0 2 4 6
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This provides a symmetry
argument for known data

reduction methods used for SVMs

Mladenov, Kleinhans, Kersting AAAI"17

-10 -5 0 5 10
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Mladenov, Kleinhans, Kersting AAAI"17

Approximately Lifted SVM:
Cluster data points via K-means
using sorted distance vectors.
Solve SVM on cluster
representatives only

Symmetry-based Data
Programming: fractional
autom. of label-preserving
data transformations

1.00 Original SVM

. the higher, the
g better

D=X $=

s
"1 Orlglnal SVM

I x
37800
400119

Flp= 36

PAC-style generalization bound:

the approximately lifted SVM will very likely
have a small expected error rate if it has a
small empirical loss over the original dataset.

g’°° the lower, the
- better

380x faster

MNIST image classifig

100 III
z I

4 a 12162024233236
of [plart s (red, blue)/# of [slJamples (green)

(d) Les Translat
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[Mladenov, Belle, Kersting AAAI"17]

And, there are other “-02”, “-03”, ... flags, "
e.g symbolic-numerical interior point solvers

b3
a... _ _
PN Ty ail ap -+ ap
i 3 C{...% ('{0..‘0 + a1 apy ¢ Qg
) u u 7 L : P
5/\4 5 4 3 2 0

7 6

| Aml Am2  *** Qmn |
Formulae parse  Algebraic Matrix Free
trees Decision Diagrams Optimization

aunning Time vs- ANlA) All this opens the general

A0E+S K machine learning toolbox for
30645 /’ declarative machines:
20845 e BPRRE feature selection, least-squares
1.0E+5 S BT regression, label propagation, ranking,
00E:0 &= 1.0E+8 collaborative filtering, community
YR A, detection, deep learning, ...

~samsmaped and polished and possibly drilled before painting, each of which actions require a
~rarTOET 01 100IS Which are possibly available. Various painting and connection methods are represented, each having an
effect on the quality of the job, and each requiring tools. Rewards (required quality) range from 0 to 10 and a discounting
factor of 0. 9 was used used
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Relations and (fractional) automorphisms
are a natural foundation for

SYMMETRY-BASED ML AND
DATA PROGRAMMING

[GENS, DOMINGOS NIPS 2014; RATNER ET AL. NIPS 2016]
= |Learning (rich) representations is a central problem of
machine learning

* (Fractional) symmetry / group theory provide a natural
foundation for learning representations

» Symmetries = “unimportant” variants of data (graphs,
relational structures, ...)

= “Unimportant” variants programmed via declarative rules
= [et's move beyond QPs: CSPs, SDPs, Deep Networks, ...
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Together with high-level languages .
THINKING MACHINE LEARNING

* Shortens data science code to make ML techniques faster to
write and easier to understand

* Reduces the level of expertise necessary to build ML
applications

* Facilitates the construction of more sophisticated ML that
Incorporate rich domain knowledge and separate queries
from underlying code

« Supports the construction of integrated ML machines thank
think across a wide variety of domains and tool types

* Accelerates ML machines by exploiting language properties,
compression, and compilation

Thanks for your attention!
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