
Modeling, Constraint Solving and Model Manipulation
sub: Code, lots of it!
Laurent Michel1, Pascal Van Hentenryck2 Pierre Schauss3

1U. of Connecticut

2U. of Michigan

3U. of Louvain-La-Neuve

Overview

•Motivation

•Modeling Layer

•Variables / Constraints

•Transformations, reformulation and concretizations

•Consistency handling

•Solving Layer

•Microkernel

•Events / Propagators and Propagation

•Views

•Hybrids

•Search building blocks

•Parallel support

2

Motivation

• Solver Design Objective

•Strike a balance….

3

Flexibility

Efficiency Simplicity

Design Mantra

4

Optimization Program
=

Model + Solver + Search

Models

Optimization Program = Model + Solver + Search

‣ Models are first-class objects

-models contain abstract objects, can be inspected/transformed

‣The model expresses the structure explicitly

-modeling is a key challenge in optimization

- transforming models is a fundamental area of research

‣ At least the same expressivity as modeling languages

- AMPL, OPL, Zinc

Solvers

• Technology specific

•Holds onto representation for variables, domains, propagators,…

• Provides inference capabilities

•Through propagators

•Through statistics (learning)

• Memory consideration

•Concurrency

•State restoration

6

Optimization Program = Model + Solver + Search

Search

• Technology agnostic

•Adapts to LS / CP / Even (M)IP ? …

• Supports

•Non-determinism

•Strategies (non-chronological)

• Instrumentation

•Concurrent-friendly

7

Optimization Program = Model + Solver + Search

Objective Today

• How to bring this VISION together

•Clean separation of concerns (Model + Solver + Search)

•Clean mapping from Declarative to Operational

•Declarative abstractions

•Concrete abstractions

•Concretization process

•Clean Search

•Technology neutral

•Concurrency neutral

8

Benefits

• Flexibility

•Reusable models

•Technology switch easy

•Hybrids techniques

• Simplicity

•Microkernel maintainable

•Microkernel adaptable

•Easily and transparently support parallel computation

• Efficiency

• Low computational overhead

•Constant factor memory usage increase

9

Flexibility

Efficiency Simplicity

Roadmap

• Look at architecture for

•Abstract layer

•Concrete layer

•Concretization process

•Reformulation process

• Focus on design decisions that
reach the right balance

10

Flexibility

Efficiency Simplicity

One Example

• Consider the classic magic series with two redundant

11

8i 2 0..n� 1 :
X

k20..n�1

(xk = i) = xi

X

i20..n�1

(xi · i) = n

X

i20..n�1

xi · (i� 1) = 0

This is a model with no commitment to
any technology

One Example

• As a Swift program

12

import ORProgram
autoreleasepool {
 print("magicSerie in swift!")
 let n = 14
 let m = ORFactory.createModel()
 let R = range(m,0...n)
 let x = ORFactory.intVarArray(m, range: R, domain: R)
 for i in 0..<n {
 m.add(sum(m, R: R) {k in x[k] == i} == x[i])
 }
 m.add(sum(m,R: R) {i in x[i] * i } == n)
 m.add(sum(m,R: R) {i in x[i] * (i-1)} == 0)
}

Still no solver. Only a declarative model

One Example: Solving it!

13

import ORProgram

autoreleasepool {
 …

 let cp = ORFactory.createCPProgram(m)
 cp.search {
 firstFail(cp, x)
 }
 print("Number of solutions: \(cp.solutionPool().count())")
}

Solve with CP, sequentially.

One Example: Solving it again…

14

import ORProgram

autoreleasepool {
 …

 let cp = ORFactory.createCPParProgram(m, nbThreads : 2)
 cp.search {
 firstFail(cp, x)
 }
 print("Number of solutions: \(cp.solutionPool().count())")
}

Solve with CP, in parallel.

One Example: Solving it again…

15

import ORProgram

autoreleasepool {
 …

 let cp = ORFactory.createMIPProgram(m)
 cp.defaultSearch()

 print("Number of solutions: \(cp.solutionPool().count())")
}

Solve with MIP (Gurobi).

Let’s do this!

Overview

•Motivation

•Modeling Layer

•Variables / Constraints

•Transformations, reformulation and concretizations

•Consistency handling

•Solving Layer

•Microkernel

•Events / Propagators and Propagation

•Views

•Hybrids

•Search building blocks

•Parallel support

17

Variables [Objectice-CP, CP’13]

• Use multiple abstractions

•An Abstract Modeling Variable

•Purely Declarative

•Only holds onto an identifier

• Is serializable

•Several Concrete Implementation Variables

•Purely Operational

•Holds data structures needed by the matching solver

18

When modeling…

• Only create the declarative abstraction

• Postpone the creation of operational objects

19

Modeling Layer

• Have an explicit model representation

•Model owns variables (as well as data-structures and constraints)

•Variable remembers its owner (model)

•Variable only store an identifier and possibly bounds

• Use sub-type polymorphism

•To support multiple types of variables
• Integers

•Floats

•Real

•Sets

•… 20

Constraints

• Use multiple abstractions

•Abstract constraints for modeling

•Purely declarative

•Expressions for algebraic, logical and reified constraints

•Classes for global constraints

•Hold an identifier each time

•Concrete propagators for solving

•Purely operational

•Contain data structures and filtering algorithms

21

Expressions for Constraints

• Expressions language E defined inductively with a simple grammar

22

Rel :== Rel {||,&&,=>} Rel
:== !Rel

Rel :== Expr {≤,≥,<,>,==,!=} Expr
Expr :== Expr {+,-,*,/} Expr

:== sum(id in Expr) Expr
:== prod(id in Expr) Expr
:== Expr [integer]
:== Expr [Expr]
:== Expr . id
:== id
:== integer
:== abs(Expr)

Expression and Parse Trees

• This code builds an expression for the language E
•Assume n = 3 (for brevity)

• Left associativity for +

•Neutral of zero

•Composite design pattern

• Introspection with tree traversal

• Visitor design pattern

23

sum(m,R: R) {i in x[i] * i } == n

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

n

Classes for Constraints

• Useful for combinatorial structure

• Prototypical example

• Part of Sudoku Model

24

alldifferent(x : array[ORIntVar])

import ORProgram
autoreleasepool {
 let model = ORFactory.createModel()
 let R = range(model, 1...9)
 let x = ORFactory.intVarMatrix(model, range: R, R, domain:R)
 for i : ORInt in 1...9 {
 model.add(ORFactory.alldifferent(all(model,R) { j in x[i,j] }))
 model.add(ORFactory.alldifferent(all(model,R) { j in x[j,i] }))
 }
 …
}

Model Introspection

• Key ability

•Must be able to traverse / inspect all the entities in the model

•For serialization

•For reformulation [Combinators,CP’13,Lagrangian,CP’14,Scheduling,CPAIOR’16]

•For concretization

25

Reformulation ?

26

• It’s a compilation / rewriting of

•From an abstract model M0

•To a abstract model M1

• Formally

hX,D,Ci
hX 0, D0, C 0i

hX 0, D0, C 0i = ⌧(hX,D,Ci)

Reformulation

• Simple example

•Decompose expressions into basic constraints

• Input: an expression:

• Output : A set of constraints

• Notes

•No new variables

•A single output constraint

27

sum(m,R: R) {i in x[i] * i } == n

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

n

{LinearEQ([x[1],x[2]],[1,2],3)}

Specification

• First

• Let a term represent a linear form

• Then define relations over expression in language E

28

t 2 T

t =
X

i2S

ai · xi + c

Re : Rel ! 2C ⇥ 2X

Le : Expr ! T ⇥ 2C ⇥ 2X

Abridged Definitions

• R relation for equality

•Where

• In

29

Le(e1) =ht1, C1, X1i
Le(e2) =ht2, C2, X2i

t3 = t1 t2

Re(e1 == e2) = hC1 [C2 [{LinearEQ(t3, 0)}, X1 [X2i

Abridged Definitions

• R relation for equality to a constant

•Where

30

Re(e1 == c) = hC1 [{t1 � c = 0}, X1i

Le(e1) =ht1, C1, X1i

Abridged Definition

• L relations (literal, variable, addition, multiplication by constant)

31

Le(c) = hc, ;, ;i
Le(x) = h1 · x+ 0, ;, {x}i

Le(e1 + e2) = ht1 � t2, C1 [C2, X1 [X2i

where

⇢
Le(e1) = ht1, C1, X1i
Le(e2) = ht2, C2, X2i

Le(e1 · c) = ht0, C1, X1i
where Le(e1) = ht1, C1, X1i

in t0 =
X

i2S(t1)

a1i · c · xi + c1 · c

Abridged Definition

• L relation (reified equality)

32

Le(e1==c) = h↵1, C1 [C2, X1 [{↵0,↵1}i

where

Le(e1) = ht1, C1, X1i
D(↵0) = lower(t1)..upper(t1)
D(↵1) = 0..1
C2 = {↵0 = t1, reifyEQ(↵1,↵0, c)}

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

3

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

3

0,∅,∅

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

3

0,∅,∅

x0,∅,∅

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

3

0,∅,∅

x0,∅,∅ t1 = x0 * 0 + 0
 ⇒ t1 = 0
returns 0, ∅, ∅

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

3

0,∅,∅

x0,∅,∅ t1 = x0 * 0 + 0
 ⇒ t1 = 0
returns 0, ∅, ∅

L(e1) = 0, ∅, ∅
L(e2) = 0, ∅, ∅
returns 0+0, ∅, ∅

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

3

0,∅,∅

x0,∅,∅ t1 = x0 * 0 + 0
 ⇒ t1 = 0
returns 0, ∅, ∅

L(e1) = 0, ∅, ∅
L(e2) = 0, ∅, ∅
returns 0+0, ∅, ∅

x1,∅,∅

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

3

0,∅,∅

x0,∅,∅ t1 = x0 * 0 + 0
 ⇒ t1 = 0
returns 0, ∅, ∅

L(e1) = 0, ∅, ∅
L(e2) = 0, ∅, ∅
returns 0+0, ∅, ∅

x1,∅,∅

 t1 = x1 * 1 + 0 * 1
 ⇒ t1 = x1 + 0
returns x1+0, ∅, {x1}

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

3

0,∅,∅

x0,∅,∅ t1 = x0 * 0 + 0
 ⇒ t1 = 0
returns 0, ∅, ∅

L(e1) = 0, ∅, ∅
L(e2) = 0, ∅, ∅
returns 0+0, ∅, ∅

x1,∅,∅

 t1 = x1 * 1 + 0 * 1
 ⇒ t1 = x1 + 0
returns x1+0, ∅, {x1}

L(e1) = 0, ∅, ∅
L(e2) = x1+0, ∅, {x1}
returns x1+0, ∅, {x1}

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

3

0,∅,∅

x0,∅,∅ t1 = x0 * 0 + 0
 ⇒ t1 = 0
returns 0, ∅, ∅

L(e1) = 0, ∅, ∅
L(e2) = 0, ∅, ∅
returns 0+0, ∅, ∅

x1,∅,∅

 t1 = x1 * 1 + 0 * 1
 ⇒ t1 = x1 + 0
returns x1+0, ∅, {x1}

L(e1) = 0, ∅, ∅
L(e2) = x1+0, ∅, {x1}
returns x1+0, ∅, {x1}

L(e1) = x1+0, ∅, {x1}
L(e2) = 2*x2+0, ∅, {x2}
returns x1+2*x2+0, ∅, {x1,x2}

0,∅,∅

Mul

x0 0

Mul

x1 1

Mul

x2 2

0

Add

Add

Add

EQ

3

0,∅,∅

x0,∅,∅ t1 = x0 * 0 + 0
 ⇒ t1 = 0
returns 0, ∅, ∅

L(e1) = 0, ∅, ∅
L(e2) = 0, ∅, ∅
returns 0+0, ∅, ∅

x1,∅,∅

 t1 = x1 * 1 + 0 * 1
 ⇒ t1 = x1 + 0
returns x1+0, ∅, {x1}

L(e1) = 0, ∅, ∅
L(e2) = x1+0, ∅, {x1}
returns x1+0, ∅, {x1}

L(e1) = x1+0, ∅, {x1}
L(e2) = 2*x2+0, ∅, {x2}
returns x1+2*x2+0, ∅, {x1,x2}

0,∅,∅

L(e1) = x1+2*x2+0, ∅, {x1,x2}
L(e2) = 3, ∅, ∅
{LinearEQ([x1,x2],[1,2],3)}, {x1,x2}

Abridged Definitions

• R relation for equality

•Where

• In

43

Le(e1) =ht1, C1, X1i
Le(e2) =ht2, C2, X2i

t3 = t1 t2

Re(e1 == e2) = hC1 [C2 [{LinearEQ(t3, 0)}, X1 [X2i

Transformation Maps

• Easy to do with identifiers

•Array of objects indexed by source identifier.

• When

• Create an array and…

44

y = ⌧(x)

⌧ [x.id] y

Summary

• Decomposition is a Reformulation

• It rewrites expressions and breaks them down

• It produces a set of simpler constraints

• It can introduce auxiliary variables

• Bottom line

•The resulting model is still technology neutral

•The model transformation tracks the rewriting in a mapping 𝝉

45

Concretization ?

• It’s a compilation of

•An abstract model

•To a concrete representation

• Formally

• More details: Next talk!

46

hX,D,Ci
hX 0, D0, C 0i

hX 0, D0, C 0i = �(hX,D,Ci)

Concretization

• Purpose

•maps variables

•adds auxiliary variables

•maps abstract constraints into concrete propagators

•builds mappings to

•Remember the relationships

•Mappings enable the translation of

•abstract operations on the declarative model

•into concrete operations on the operational model

47

Concretization Process

• Introspection on model

• Inductive definition on the constructions in L

•Build the concrete objects and add them

•To the solver

•To the concretization map ɣ

• Output: A Program

•Computational capabilities

•Only need to add the search

48
Source Model ProgramSolver(T)

ɣM3 P

Consistency

• Purpose

•State the level of consistency desired for a constraint

• How to do it

•Provide the ability to give an annotation for a model constraint

•Annotation can be anything.

•To be interpreted by the solver during the concretization process

•Annotation stored in a map: Constraint → Note

49

Usage Example

• From a Swift Model

50

autoreleasepool {
 let n = 50
 let m = ORFactory.createModel()
 let an = ORFactory.annotation()
 let R = range(m,0...n)
 let x = ORFactory.intVarArray(m, range: R, domain: R)
 for i in 0..<n {
 an.dc(m.add(sum(m, R: R) {k in x[k] == i} == x[i]))
 }
 m.add(sum(m,R: R) {i in x[i] * i } == n)
 m.add(sum(m,R: R) {i in x[i] * (i-1)} == 0)

 let cp = ORFactory.createCPProgram(m, annotation: an)
 cp.search { firstFail(cp, x) }
 print("Number of solutions: \(cp.solutionPool().count())")
}

Define Annotation Map

Ask for DC

Use Annotation Map

Inside the Implementation

• Close look at one concretization case Element: res = array[idx]

•Objective-C implementation!

51

-(void) visitElementCst: (id<ORElementCst>) cstr {
 if (_gamma[cstr.getId] == NULL) {
 [cstr.array visit: self];
 [cstr.idx visit: self];
 [cstr.res visit: self];
 id<CPPropagator> cc = [CPFactory element: _gamma[idx.getId]
 idxCstArray: array
 equal: _gamma[res.getId]
 annotation: [_notes levelFor:cstr]
];
 [_engine add: cc];
 _gamma[cstr.getId] = cc;
 }
}

Use Annotation Map

ElementBC ElementDC

Overview

•Motivation

•Modeling Layer

•Variables / Constraints

•Transformations, reformulation and concretizations

•Consistency handling

•Solving Layer

•Microkernel

•Events / Propagators and Propagation

•Views

•Hybrids

•Search building blocks

•Parallel support

52

Programs with Micro-kernel Architecture

•Purpose of Program

•Bundle

•Computational engine

•Search capabilities

•Separation of concerns

•Engine : inference (e.g., propagation)

•Explorer: search

• Program ?

•Mostly delegation

53

Program

Engine Explorer

Explorer

controller

Engine

 [Microkernel,CP’17]

Micro-kernel: The Engine

•Purpose

•Capture inferencing APIs

•Capture propagation

•Benefits

•Minimal APIs

•Supports modern techniques

•Remain fully extensible

54

Program

Engine Explorer

Explorer

controller

Engine

Bird’s eye view

•μKernel APIs (Objective-C protocols)

•Model loading	 	 	 	 CPEngine

•Propagation	 	 	 	 	 CPUKernel

55

Program

Engine Explorer

Explorer

controller

Engine

•μKernel APIs (interfaces)

•Model loading	 	 	 	 CPEngine

•Propagation	 	 	 	 	 CPUKernel

•What remains outside

•Domains

•Variables

•Constraints

Bird’s eye view

56

Program

Engine Explorer

Explorer

controller

Engine

var{int}
Constraint{int}

var{float}
Constraint{float}

var{Bit}
Constraint{Bit}

... ...

Sole requirement

•Abstract Propagator Concept

57

interface CPPropagator {

 ORUInt getId();

 void post();

}

Numbering
Registration

What is outside the μKernel ?

•All variable types

• int

•float / real

•bit vectors

•sets

•graphs …

•All propagators for each type of variables

• Illustration with

•Finite Domain Integer Variables

•Finite Domain Propagators

58

Storage Medium

• Memory management matters

•GC is wonderful….

•but GC can be slow.

•Manual management is delicate

•Handle stack vs. heap

•Handle reference counting

•Reference counting adds overhead too….

•Handle search implementation “side-effects”

• Host language implications

• Java (GC), Swift (ARC), Python (ARC), C++ (X)…

59

State Management / Backtracking

• Done with a trail (Inheritance from CLP systems)

•Keeps track of changes over time

•Undo changes upon backtracking

•Can be state undo 	 (Address + old value)

•Can be action undo 	 (Closure!)

•Timestamped trailing
• Note

•There are alternatives (State replication : Gecode)

60

Context

• Two stacks

• _trail : pointers to reversible
entries

• _tops : pairs with

• size of trail

• top of mem. pool

• Trailing records a change

•Allocate reversible entry

•Adds entry on top of stack

• Backtracking

•Undo reversible changes

61

_trail

0

1

_block

RevEntry<int> : < PTR0 , 4 >

RevEntry<int> : < PTR1 , 10 >

RevEntry<double> : < PTR2 , 3.1 >

0

1

2

Context

62

struct Entry {
 virtual void restore() = 0;
};

class Context {
 std::stack<Entry*> _trail;
 std::stack<std::tuple<int,std::size_t>> _tops;
 mutable int _magic;
 char* _block;
 std::size_t _bsz;
 std::size_t _btop;
public:
 Context();
 ~Context();
 typedef std::shared_ptr<Context> Ptr;
 void trail(Entry* e) { _trail.push(e);}
 int magic() const { return _magic;}
 void incMagic() { _magic++;}
 void push();
 void pop();
 friend void* operator new(std::size_t sz,Context::Ptr& e);
};

State Management in this talk

• State restoration supported through trailing [MiniCP,17]

• Implementation code samples in C++

63

template<class T> class rev {
 Context::Ptr _ctx;
 int _magic;
 T _val;
public:
 rev(Context::Ptr ctx,const T& v) :_ctx(ctx),_magic(ctx->magic()),_val(v) {}
 operator T() const { return _val;}
 T value() const { return _val;}
 rev<T>& operator=(const T& v);
 class RevEntry: public Entry {
 T* _at;
 T _old;
 public:
 RevEntry(T* at) : _at(at),_old(*at) {}
 void restore() { *_at = _old;}
 };
 void trail(int nm) {
 _magic = nm;
 Entry* entry = new (_ctx) RevEntry(&_val);
 _ctx->trail(entry);
 }
};

Placement new

inline void* operator new(std::size_t sz,Context::Ptr& e) {
 char* ptr = e->_block + e->_btop;
 e->_btop += sz;
 return ptr;
}

Variable

Finite-Domain Integer Variable

•Coalesce

•Domain representation

•Notifiers to domain events: Closures!

64

Domain Notifiers

Abstract Concrete Var

• Yes!

•Super class for all concrete vars

• It only offers an API to “number” them!

65

class AVar {
protected:
 virtual void setId(int id) = 0;
 friend class CPSolver;
public:
 typedef handle_ptr<AVar> Ptr;
 AVar() {}
 virtual ~AVar() {}
};

Domain Events

• API to notify the occurrences of “Events”

66

struct IntNotifier {
 virtual void bindEvt() = 0;
 virtual void domEvt(int sz) = 0;
 virtual void updateMinEvt(int sz) = 0;
 virtual void updateMaxEvt(int sz) = 0;
};

Domain (C++ Style)

• BitSet representation (other choices possible!)

67

class BitDomain {
 Engine::Ptr _ctx;
 std::vector<rev<int>> _dom;
 rev<int> _min,_max,_sz;
 const int _imin,_imax;
public:
 typedef std::unique_ptr<BitDomain> Ptr;
 BitDomain(Engine::Ptr ctx,int min,int max);
 int getMin() const;
 int getMax() const;
 int getSize() const;
 bool isBound() const;
 bool member(int v) const;
 void bind(int v,IntNotifier& x);
 void remove(int v,IntNotifier& x);
 void updateMin(int newMin,IntNotifier& x);
 void updateMax(int newMax,IntNotifier& x);
};

Reversible State

Concrete FD Variable Representation

68

template<typename T> class var {};

template<> class var<int> :public AVar, public IntNotifier {
 std::weak_ptr<CPSolver> _solver;
 BitDomain::Ptr _dom;
 int _id;
 revList<std::function<void(void)>> _onBindList;
 revList<std::function<void(void)>> _onBoundsList;
protected:
 void setId(int id) override { _id = id;}
public:
 typedef handle_ptr<var<int>> Ptr;
 var<int>(CPSolver::Ptr& cps,int min,int max);
 ~var<int>();
};

Owner & Representation

Notifiers

Concrete FD Variable API

69

template<> class var<int> :public AVar, public IntNotifier {
…

public:
 int getMin() const { return _dom->getMin();}
 int getMax() const { return _dom->getMax();}
 int getSize() const { return _dom->getSize();}
 bool isBound() const { return _dom->isBound();}
 bool contains(int v) const { return _dom->member(v);}
 void bind(int v);
 void remove(int v);
 void updateMin(int newMin);
 void updateMax(int newMax);
 void updateBounds(int newMin,int newMax);
 void bindEvt() override;
 void domEvt(int sz) override;
 void updateMinEvt(int sz) override;
 void updateMaxEvt(int sz) override;
 auto whenBind(std::function<void(void)>&& f);
 auto whenChangeBounds(std::function<void(void)>&& f);
};

Registration

Updates

Data Flow on update (e.g., bind)

• What is the flow of
information when a variable is
bound ?

70

x.bind(5)

void var<int>::bind(int v)
{
 _dom->bind(v,*this);
}

void BitDomain::bind(int v,IntNotifier& x)
{
 if (_sz == 1 && v == _min)
 return;
 if (v < _min || v > _max || !GETBIT(v))
 failNow();
 _min = v;
 _max = v;
 _sz = 1;
 x.bindEvt();
}

void var<int>::bindEvt()
{
 CPSolver::Ptr solver = _solver.lock();
 for(auto& f : _onBindList)
 solver->schedule(f);
 for(auto& f : _onBoundsList)
 solver->schedule(f);
}

x

_solver
_dom

10001101

Solver

What are these f thingies ?

static inline void failNow()
{
 throw Failure;
}

Event handling through Closures

• Responding to an event is done with a closure.
•When something happens, we schedule the closure for execution

•Scheduling can use priorities if we wish

• Revisit the variable definition!

71

template<> class var<int> :public AVar, public IntNotifier {
 std::weak_ptr<CPSolver> _solver;
 BitDomain::Ptr _dom;
 int _id;
 revList<std::function<void(void)>> _onBindList;
 revList<std::function<void(void)>> _onBoundsList; Notifiers

Reversible list of anonymous functions void → void

Priorities ?

• Easy to handle

•Make it a list of pairs < int, void → void >

•Use the integer as a priority when scheduling the closure

• Data structure change

72

revList<std::tuple<int,std::function<void(void)>>> _onBindList;

Events ?

• It’s your call!

• Obvious choices for FD variables

•min Increase

•max Decrease

•both bound change

• variable bound

• arbitrary domain change

• value loss (with the value being lost)

73

Key Observations

• The micro-kernel does not know what is scheduled!

•This can be variable-centric

•This can be constraint-centric

• It’s up to you based on what the closure does.

• This supports multiple AC-style algorithms, e.g.,

•AC3

•AC5

• Closure receiving an argument (e.g., value lost) can….

•Wrap the argument in a temporary polymorphic object

• e.g., Value class to accommodate typing

74

Propagator example x != y + c

• Class definition for bound-consistent propagator

75

class NEQBinBC : public Propagator { // x != y + c
 var<int>::Ptr _x,_y;
 int _c;
public:
 NEQBinBC(var<int>::Ptr& x,var<int>::Ptr& y,int c)

: _x(x),_y(y),_c(c) {}
 void post() override;
};

Propagator example x != y + c

• post method does everything!

76

void NEQBinBC::post() {
 if (_x->isBound())
 _y->remove(_x->getMin() - _c);
 else if (_y->isBound())
 _x->remove(_y->getMin() + _c);
 else {
 _x->whenBind([this] {
 _y->remove(_x->getMin() - _c);
 });
 _y->whenBind([this] {
 _x->remove(_y->getMin() + _c);
 });
 }
}

Disabling ?

77

class NEQBinBC : public Propagator { // x != y + c
 var<int>::Ptr _x,_y;
 int _c;
 revList<std::function<void(void)>>::revNode* hdl[2];
 …

};

void NEQBinBC::post() {
 if (_x->isBound())
 _y->remove(_x->getMin() - _c);
 else if (_y->isBound())
 _x->remove(_y->getMin() + _c);
 else {
 hdl[0] = _x->whenBind([this] {
 _y->remove(_x->getMin() - _c);
 hdl[0]->detach();
 hdl[1]->detach();
 });
 hdl[1] = _y->whenBind([this] {
 _x->remove(_y->getMin() + _c);
 hdl[0]->detach();
 hdl[1]->detach();
 });
 }
}

Supporting Value Events (AC5)

78

void NEQBinDC::post() {
 if (_x->isBound())
 _y->remove(_x->getMin() - _c);
 else if (_y->isBound())
 _x->remove(_y->getMin() + _c);
 else {
 _x->updateMinAndMax(_y->getMin() + _c,_y->getMax() + _c);
 _y->updateMinAndMax(_x->getMin() - _c,_x->getMax() - _c);
 for(auto v = _x->getMin(); v <= _x->getMax(); v++)
 if (!_x->member(v)) _y->remove(v - _c);
 for(auto v = _y->getMin(); v <= _y->getMax(); v++)
 if (!_y->member(v)) _x->remove(v + _c);
 _x->whenLoseValue([this](const Value& v) { _y->remove(v - _c);});
 _y->whenLoseValue([this](const Value& v) { _x->remove(v + _c);});
 }
}
void var<int>::loseValEvt(int v) {
 CPSolver::Ptr solver = _solver.lock();
 for(auto& f : _onLoseValList))
 solver->scheduleValue(f,Value(v));
}

Propagation Engine

• Purpose

•Track the concrete variables

•Track the concrete propagators

•Provide the propagation logic

•Maintain basic statistics

79

Propagation Engine class

80

typedef std::reference_wrapper<std::function<void(void)>> Closure;

class Engine { // # microkernel
 Context::Ptr _ctx; // # backtracking context
 std::list<AVar::Ptr> _iVars; // # all concrete variables
 std::list<Propagator::Ptr> _iCstr; // # all propagators
 std::deque<Closure> _queue; // # propagation queue
 bool _closed; // # model posted?
 int _nbc; // # choices
 int _nbf; // # fails
 int _nbs; // # solutions
 rev<Status> _cs;
public:

…
};

Propagation Engine class

81

typedef std::reference_wrapper<std::function<void(void)>> Closure;

class Engine {
 …
public:
 template<typename T> friend class var;
 typedef std::shared_ptr<CPSolver> Ptr;
 CPSolver();
 ~CPSolver();
 void registerVar(AVar::Ptr avar);
 void schedule(std::function<void(void)>& cb);
 Status propagate();
 Status add(Propagator::Ptr c);
 void close();
 Context::Ptr context() { return _ctx;}
 Status status() const { return _cs;}
 void incrNbChoices() { _nbc += 1;}
 void incrNbSol() { _nbs += 1;}
};

Scheduling

• Trivial implementation

•Stores the given closure into the queue

•Note that queue holds a reference to the closure (which is held in
a variable somewhere….)

82

 void schedule(std::function<void(void)>& cb)
 {

 _queue.emplace_back(cb);
}

Propagation

• Minor simplification (not showing priorities)

83

Status CPSolver::propagate() {
 try {
 while (!_queue.empty()) {
 auto cb = _queue.front();
 _queue.pop_front();
 cb();
 }
 return _cs = Suspend;
 } catch(Status x) {
 _queue.clear();
 _nbf += 1;
 return _cs = Failure;
 }
} static inline void failNow()

{
 throw Failure;
}

Overview

•Motivation

•Modeling Layer

•Variables / Constraints

•Transformations, reformulation and concretizations

•Consistency handling

•Solving Layer

•Microkernel

•Events / Propagators and Propagation

•Views

•Hybrids

•Search building blocks

•Parallel support

84

Views [Michel,14]

• Views are useful (in order)

•To reduce software complexity and “variants” of propagators

•To cut back on storage for simple arithmetic relation

•To speed up simple constraint propagation

• Views can be less than straightforward

•Sometimes carry restrictions on what can be captured

• Introduce unexpected side-effects

•Break idempotence assumptions

85

Typical Example

• Consider the queens problem with globals

• 3 constraints over variable array x

• alldifferent(x)

• alldifferent(all(i in D) x[i] + i)

• alldifferent(all(i in D) x[i] - i)

•Constraint signatures?

• alldifferent(var<CP>{int} [] array)

• alldifferent(expr<CP>{int}[] array)

•Thus two different constraints and implementations!

86

Decomposition…

• It’s not pretty but it can solve the problem

• It can be automated with reformulations

87

Model m();
var<CP>{int} x[i in D](D);
var<CP>{int} xp[i in D];
var<CP>{int} xn[i in D];

forall(i in D)
 m.post(xp[i] == x[i] + i);
forall(i in D)
 m.post(xn[i] == x[i] - i);
m.post(alldifferent(x));
m.post(alldifferent(xp));
m.post(alldifferent(xn));

Model m();
var<CP>{int} x[i in D](D);

m.post(alldifferent(x));
m.post(alldifferent(all(i in D) x[i]+i);
m.post(alldifferent(all(i in D) x[i]+i);Yet… Huge Overheads

in Time

in Space

A Better Solution

• Produce a design mechanism that...

•Delivers the illusion of variety
•While retaining a unique lean implementation

88

Variable Adapter a.k.a. a View

“Virtual” variable
Adapter uses a “mapping” function
to translate for the “real” variable

Related Work

• The idea is certainly not new

• Indexicals		 	 	 	 	 	 	 Prolog-style languages

• [Carlsson97]

• [VHT92]

•Views	 	 	 	 	 	 	 	 	 Ilog Solver,Gecode, COMET

• Gecode views enable derived propagators

• [Schulte08: Perfect Derived Propagators]

• [Schulte13: View-based propagator derivation]

• CASPER supports general views but limited to bound-consistency

• [Correia13: View-based propagation of decomposable constraints]

89

Gecode Views

• Template-based

•But essence is general and could rely on polymorphism

• Strike a specific balance between

•Expressiveness

•Flexibility

• Limitation?

• injective context

• Henceforth

90

Variable Views

Domain Views

• Offers a new way to support views

•Using sub-type polymorphism

•But it can be done just as well with templates!

• Generalization

•To support injective use 	 	 	 	 [like variable-views]

•To support non-injective use	 	 	 [new!]

•To fully support domain-consistency	[new!]

•At virtually no cost	 	 	 	 	 	 [w.r.t. variable-views]

91

Domain Views

Variable

• First, the interface

92

interface Variable

bool member(V v);
bool remove(V v);

void watch(C c);
void watchValue(C c);

void wake();
void wakeValue(V v);

Query & update

Registration

Response notification

Classic Domain Variable

• Abstract Implementation

93

implementation DomainVariable
{V} D;
{C} SC;
{C} SCv;

DomainVariable({V} Do) { D=Do;SC=∅;SCv=∅;}
bool member(V v) { return v ∈ D;}
bool remove(V v) {

if (v ∈ D)
D = D \ {v};
wake();
wakeValue(v);

}
void watch(C c) { SC := SC ∪ {c};}
void watchValue(C c) { SCv := SCv ∪ {c};}
void wake() { Q := Q ∪ { <c,this> : c ∈ SC;}
void wakeValue(V v) { Q := Q ∪ { <c,this,v> : c ∈ SCv;}

Animation

94

y

{1,2,3,…,9,10,11,…..}

D
SC
SCv C0 C1 Ck...

Ci Cj Cn......

Q:

first

c0,y

Animation

95

y

{1,2,3,…,9,10,11,…..}

D
SC
SCv C0 C1 Ck...

Ci Cj Cn......

Q:

first

C0

C0

c0,y

Animation

96

y

{1,2,3,…,9,10,11,…..}

D
SC
SCv C0 C1 Ck...

Ci Cj Cn......

Q:

first

C0

C0 C1 Ck...

c0,y

Animation

97

y

{1,2,3,…,9,10,11,…..}

D
SC
SCv C0 C1 Ck...

Ci Cj Cn......

Q:

first

C0

C0 C1 Ck...

C1 Ck...c1,yc0,y ... ck,y

Animation

98

y

{1,2,3,…,9,10,11,…..}

D
SC
SCv C0 C1 Ck...

Ci Cj Cn......

Q:

first

C0

C0 C1 Ck...

C1 Ck...

<ci,y,10>

c1,yc0,y ... ck,y

Animation

99

y

{1,2,3,…,9,10,11,…..}

D
SC
SCv C0 C1 Ck...

Ci Cj Cn......

Q:

first

C0

C0 C1 Ck...

C1 Ck...

<ci,y,10><ci,y,10>

c1,yc0,y ... ck,y

Animation

100

y

{1,2,3,…,9,10,11,…..}

D
SC
SCv C0 C1 Ck...

Ci Cj Cn......

Q:

first

C0

C0 C1 Ck...

C1 Ck... <ci,y,10>c1,yc0,y ... ck,y

Animation

101

y

{1,2,3,…,9,10,11,…..}

D
SC
SCv C0 C1 Ck...

Ci Cj Cn......

Q:

first

C0

C0 C1 Ck...

C1 Ck... <cn,y,10><ci,y,10> ...c1,yc0,y ... ck,y

Propagation

• Imagine Cn is a Domain-Consistent equality x == y + c

•When popping <Cn,y,10>

•Notify Cn that variable y lost value 10: 		 Cn.valueLoss(y,10)

102

Propagation

103

implementation EqualDC // x == y + c
{X} _x,_y;
int _c;
EqualDC({X} x, {X} y,int c) { _x = x;_y = y;_c =c;}
void post() {

for(k in D(_y))
if (k + _c ∉ D(_x)) y.remove(k);

for(k in D(_x))
if (k - _c ∉ D(_y)) x.remove(k);

if (!bound(_x)) _x.watchValue(self);
if (!bound(_y)) _y.watchValue(self);

 _x.whenValueLost([](int theValue) {_y.remove(theValue - _c);});
 _y.whenValueLost([](int theValue) {_x.remove(theValue + _c);});

}

Views: ψ

• Based on injective function

• Classic examples

•Shift view	 	 y ⟵ x + c

•Scale view	 y ⟵ c * x

•Affine view	 y ⟵ a * x + b

• Inverse easy to define

• ψ-1

•Example:	 if ψ(v) = v + c then ψ-1(v) = v - c

104

v0

v1

vk

vj
vn

w

Illegal!

Standard Domain Variable (Again!)

• Abstract Implementation

105

implementation DomainVariable
{V} D;
{C} SC;
{C} SCv;

DomainVariable({V} Do) { D=Do;SC=∅;SCv=∅;}
bool member(V v) { return v ∈ D;}
bool remove(V v) {

if (v ∈ D)
D = D \ {v};
wake();
wakeValue(v);

}
void watch(C c) { SC := SC ∪ {c};}
void watchValue(C c) { SCv := SCv ∪ {c};}

void wake() { Q := Q ∪ { <c,this>: c ∈ SC;}
void wakeValue(V v) { Q := Q ∪ { <c,this,v> : c ∈ SCv;}

Refining Standard Variables

• Revise the watching API!

106

implementation DomainVariable
{V} D;
{<C,X>} SC;
{<C,X,F>} SCv;

DomainVariable({V} Do) { D=Do;SC=∅;SCv=∅;}
bool member(V v) { return v ∈ D;}
bool remove(V v) {

if (v ∈ D)
D = D \ {v};
wake();
wakeValue(v);

}
void watch(C c,X y) { SC := SC ∪ {<c,y>};}
void watchValue(C c,X y,F ψ) { SCv := SCv ∪ {<c,y,ψ>};}
void watch(C c) { this.watch(c,this);}
void watchValue(C c) { this.watch(c,this,λk.k);}

void wake() { Q := Q ∪ SC; };
void wakeValue(V v) { Q := Q ∪ { <c,x,ψ(v)> : <c,x,ψ> ∈ SCv;};}

Classic Variable View<ψ>

107

implementation VariableView<ψ> // this ← ψ(x)
X x;

VariableView(X theVar) { x = theVar;}
bool member(V v) {

if ψ-1(v) ≠ ⊥ return x.member(ψ-1(v));else return NO;
}
bool remove(V v) {

if ψ-1(v) ≠ ⊥ return x.remove(ψ-1(v));else return YES;
}
void watch(C c,X y) { x.watch(c,y);}
void watchValue(C c,X y,F ϕ) { x.watchValue(c,y,ϕ o ψ);}

void watch(C c) { x.watch(c,this);}
void watchValue(C c) { x.watch(c,this,ψ);}

void wake() { Q := Q ∪ SC;}
void wakeValue(V v) { Q := Q ∪ { <c,x,ψ(v)> : <c,x,ψ> ∈ SCv;};}

Bottom Line

• Works only for Injective Views

• Can be made to support AC-5

• Save the injective function to remap values on wakeup

• Must compose injective function for views on views

• Nota bene

•One can optimize this away…

•But the solution clutters the variable API with a map function.

108

Domain Views?

• Change the organization

• Relax the limitation of variable views

•Full support for non-injective views.

• Restore a simpler state management in variables

• Key insights

•Variable is aware of views defined on it.

•Responders to notifications are back into the view

109

Key Solution

• Variable is aware of views defined on it.

• Move the responders back into the view!

110

implementation DomainVariable
{V} D;
{C} SC;
{C} SCv;
{X} Views;
DomainVariable({V} Do) { D=Do;SC=∅;SCv=∅;Views = ∅;}
void addView(X x) { Views := Views ∪ {x};}
bool member(V v) { return v ∈ D;}
bool remove(V v) {

if (v ∈ D)
D = D \ {v};
wake();
wakeValue(v);
forall y ∈ Views do

y.wake();
y.wakeValue(v);

}
void watch(C c) { SC := SC ∪ {c};}
void watchValue(C c) { SCv := SCv ∪ {c};}
void wake() { Q := Q ∪ { <c,this> : c ∈ SC;}
void wakeValue(V v) { Q := Q ∪ { <c,this,v> : c ∈ SCv;}

DomainView<ψ>

111

implementation DomainView<ψ> // this ⟵ ψ(x)
X x;
{C} SC;
{C} SCv;
{X} Views;
DomainView(X theVar) { x = theVar;SC=∅;SCv=∅;Views = ∅;}
void addView(X x) { Views := Views ∪ {x};}
bool member(V v) {

if ψ-1(v) ≠ ⊥ return x.member(ψ-1(v));else return NO;
}
bool remove(V v) {

if ψ-1(v) ≠ ⊥ return x.remove(ψ-1(v));else return YES;
}
void watch(C c) { SC := SC ∪ {c};}
void watchValue(C c) { SCv := SCv ∪ {c};}
void wake() {

Q := Q ∪ { <c,this> : c ∈ SC};
forall(y in Views) y.wake();

}
void wakeValue(V v) { // v is a value from D(x)

Q := Q ∪ { <c,this,ψ(v)> : c ∈ SCv;};
forall(y in Views) y.wakeValue(ψ(v));

}

Illustration

112

x

Ѱ

SC

SCv

Views

y

y ⇽ x + 3

Ѱ(k) = λk.k+3
Ѱ-1(k) = λk.k-3

dom

SC

SCv

Views

x

c1

c2

vars(c1) ∋ x

vars(c2) ∋ y

other view on x

view on y

1 2 3 4 5 6 7 8 9 10

y.remove(10)

Illustration

113

y.remove(10)

x

Ѱ

SC

SCv

Views

y

y ⇽ x + 3

Ѱ(k) = λk.k+3
Ѱ-1(k) = λk.k-3

dom

SC

SCv

Views

x

c1

c2

vars(c1) ∋ x

vars(c2) ∋ y

other view on x

view on y

1 2 3 4 5 6 7 8 9 10

x.remove(Ѱ-1(10))

Illustration

114

y.remove(10)

x

Ѱ

SC

SCv

Views

y

y ⇽ x + 3

Ѱ(k) = λk.k+3
Ѱ-1(k) = λk.k-3

dom

SC

SCv

Views

x

c1

c2

vars(c1) ∋ x

vars(c2) ∋ y

other view on x

view on y

1 2 3 4 5 6 7 8 9 10

Q

<c1,x,7>

Illustration

115

y.remove(10)

Q <c1,x,7>

x

Ѱ

SC

SCv

Views

y

y ⇽ x + 3

Ѱ(k) = λk.k+3
Ѱ-1(k) = λk.k-3

dom

SC

SCv

Views

x

c1

c2

vars(c1) ∋ x

vars(c2) ∋ y

other view on x

view on y

1 2 3 4 5 6 7 8 9 10
y.wakeValue(7)

Illustration

116

y.remove(10)

Q <c1,x,7>

y.wakeValue(7)

x

Ѱ

SC

SCv

Views

y

y ⇽ x + 3

Ѱ(k) = λk.k+3
Ѱ-1(k) = λk.k-3

dom

SC

SCv

Views

x

c1

c2

vars(c1) ∋ x

vars(c2) ∋ y

other view on x

view on y

1 2 3 4 5 6 7 8 9 10

<c2,y,Ѱ(7)>

Illustration

117

y.remove(10)

Q <c1,x,7>

y.wakeValue(7)

<c2,y,10>

x

Ѱ

SC

SCv

Views

y

y ⇽ x + 3

Ѱ(k) = λk.k+3
Ѱ-1(k) = λk.k-3

dom

SC

SCv

Views

x

c1

c2

vars(c1) ∋ x

vars(c2) ∋ y

other view on x

view on y

1 2 3 4 5 6 7 8 9 10

z.wakeValue(10)

Immediate Benefits

• Keeps constraints on variables with variables

• Modularizes Ѱ inside the variable

•Composition of Ѱ functions via delegation

• Handles AC-5 events, one value at a time

•No delta set

•No approximation with intervals

•Exact representation of losses

• Almost no space overhead

• Instrumentation points

• remove/member/wake/wakeValue

118

Idempotence

• Important assumption used in many solvers

119

Beware!

It interferes with views

Example

• Consider the following linear constraint [X1,X2,X3 ∈ {0,1}]

• The Linear Inequality propagator will…

•Deduce that to reach 7, x1 must be 1

•Once x1 is 1, either x2 or x3 can be used to get to 7. No
deductions

• Idempotence tells us we can safely stop propagation after
checking each variable once in this constraint.

120

5 * x1 + 3 * x2 + 3 * x3 ≥ 7

However…

• Consider the presence of a view: x2 = 1 - x1

• What is the impact ?

• The Linear Inequality propagator will…

•Deduce that x1 must be 1 (as before of course)

•The view immediately deduces x2 = 0

•But the linear equality does not know that and did not realize the
new upper bound of x2. So it stops as before….

•And x3 is never tightened to 1. [propagation is incorrect]

121

5 * x1 + 3 * x2 + 3 * x3 ≥ 7

Lesson ?

• While views are very useful….

• One can easily get bitten!

•Views are side-channel communications

•They invalidate idempotence assumptions

• To be correct…

• It is necessary to analyze such channels to use suitable
propagators!

122

Overview

•Motivation

•Modeling Layer

•Variables / Constraints

•Transformations, reformulation and concretizations

•Consistency handling

•Solving Layer

•Microkernel

•Events / Propagators and Propagation

•Views

•Hybrids

•Search building blocks

•Parallel support

123

Modeling

• Ingredients

124

Models

Model
Transformation

Model
Concretization

Program
Combinators

Available technologies

•Currently

•CP

• LP

• IP

•Being developed

•Routing, Scheduling [CPAIOR’16], MINLP, OptPower

•Same with explanations

• (radically new) designed

•CBLS

125

Overall

‣Given 3 technologies A,B,C

-Rewrite models from M

-Apply the 3 concretizations

-Obtain 3 Programs

‣Then

-Compose the programs

126

M !0 M1

!1

!2

M2

M3

!3
!4

M4

M5

P3

P1

P2

ɣ(A)
ɣ(B)

ɣ(C)

[Combinators,CP’13]

Purpose?

• Facilitate complex optimization programs
•Multi-technology (CP/IP/LS) 	[CP’13]
•Sequential / Parallel
•Column generation
•Benders

• LR 	 	 	 	 	 	 	 	 [CP’14]
•Scheduling	 	 	 	 	 	 [CPAIOR’16]

127

Model
CP Concrete

CP Solver

Concrete
IP Solver

||
comp.

IP

Hybrid
Solver

Combinators

• Take input runnables and…

• generate output runnable, R = C(R1, R2)

128

Runnable

SearchModel Output pipeInput pipe

Runnable Signature

(a) A runnable for solving a process

Child Runnable 1

Child Runnable 2

Combinator
Child Runnable 1

Child Runnable 2

Parent Runnable

(b) A composite from a combinator.

Fig. 2. Basic and Composite Runnables.

Definition 9 (Runnable Products) A runnable product is specified by the
grammar

hrunnable producti ::= hbasic producti | [hbasic producti] | {hbasic producti}
hbasic producti ::= UBD | LBD | COL | CST | SOL

where the basic products UBD,LBD,COL,CST,SOL represent upper bounds, lower
bounds, columns, constraints and solutions, [p] represents a stream of products
of type p, and {p} a set of products of type p.

Definition 10 (Runnable Signature) A runnable signature is a pair S =
hI,Oi, where I is a set of input runnable products and O is a set of output
runnable products.

Definition 11 (Runnable) A runnable is a pair R = hP, Si, where P is an
optimization program and S is a runnable signature.

We often abuse language and talk about the model of a runnable to denote the
model of its program.

Definition 12 (Pipes of a Runnable) Let R be a runnable hP, hI,Oii. R pro-
vides the set of input pipes {in(p,R) | p 2 I} and the set of output pipes
{out(p,R) | p 2 O}.
Our implementation provides a number of primitive runnables. They can be
created from a model M , a flattening, and a concretization. For instance, the
CPRunnable has a program hflatten(M), �

CP

i and a predefined signature.

5 Model Combinators

This section describes model combinators. We restrict our attention to binary
operators for simplicity but it is easy to generalize our results for non-binary
combinators. A model combinator R = C(R

1

, R
2

) combines two runnables R
1

and R
2

to produce another runnable. The combinator requires some properties
from its runnables, establishes the links between the pipes of its runnables and
its own, and specifies how its model relates to the models of its runnables. Figure
3 illustrates the piping intuitively. More precisely, the specification of a model
combinator consists of several parts:

Combinators Example (Parallel)

• Piping rules between R, R1, R2

• Internal Piping

•External Piping

129

R1

R2

R1

R2

Code Example (GLR)

• Start with abstract model

• Create a relaxed model using LR and constraint set to soften

• Setup a program (MIP)
• Use a sub gradient scheme on top of that program

130

In contrast to earlier work, this paper studies whether primal Lagrangian
methods can provide a simple, systematic, and principled way of boosting ex-
isting search methods, such as tabu search or large neighborhood search, when
applied to high-level models. In other words, the neighborhood N in these pri-
mal Lagrangian methods is very large and defined by a neighborhood search
technique over a high-level model.

5 Practical Implementation

The earlier sections defined a general framework for applying Lagrangian relax-
ation to high-level models. This section describes how this generality is supported
in Objective-CP [15]. Intuitively, the implementation starts with a high-level
model which is then relaxed by replacing the hard constraints with their relax-
ation and adding a new term in the objective function to capture the weighted
sum of violations or satisfiability degrees. The hard constraints are identified
either by users or automatically by a partitioning algorithms. The resulting La-
grangian model is then concretized into an optimization program, which can
be a MIP solver, a constraint-programming solver, or a constraint-based local
search. The concrete optimization program is then embedded in an algorithmic
template (a runnable in Objective-CP’s terminology [6], e.g., a surrogate dual
or a primal Lagrangian methods. We now illustrate this methodology on a few
code snippets. Consider the excerpt

1 id<ORModel > P = [ORFactory createModel];
2 ...
3 id<ORIdArray > H = ... // array of hard constraints in P
4 id<ORModel > L = [ORFactory lagrangianRelax: P relaxingConstraints: H];
5 id<ORProgram > O = [ORFactory createMIPProgram: L];
6 id<ORRunnable > r = [ORFactory subgradient: O];
7 [r run];

The code fragment starts by declaring a model P on line 1. Line 3 stores the set
of constraints deemed hard in P in array H. Line 4 creates a parametric model
L representing GLRP (�). Line 5 concretizes GLRP (�) into a parametric MIP
program O, which is solved using a subgradient template in Lines 6–7. To switch
to a CP solver, it su�ces to change line 5 into

1 id<ORProgram > O = [ORFactory createCPProgram: L];

Similarly, to use violation degrees rather than satisfiability degrees, it is su�cient
to edit line 4 to read

1 id<ORModel > L = [ORFactory lagrangianRelax: P softeningConstraints: H];

Observe that, following [6], Objective-CP stores the fact that L is a relaxation
of P and the runnable produces several products in agreement with a relaxation
specification, including a stream of lower bounds. It can thus be composed nat-
urally with a primal algorithm.

Consider now the application of a surrogate optimization scheme.

Applied to Scheduling ?

131

High-level Modeling

132

1 id<ORModel> m = [ORFactory createModel];
2 // data setup ...
3 id<ORIntRange> J = RANGE(m,0,nbJobs-1);
4 id<ORIntRange> M = RANGE(m,0,nbMach-1);
5 id<ORIntMatrix> D = [ORFactory intMatrix: m range: J : M];
6 id<ORIntMatrix> resource = [ORFactory intMatrix: m range: J : M];
7 // variables
8 id<ORTaskVarMatrix> task = [ORFactory tvMatrix:m range:J:M horizon:H duration:D];
9 id<ORIntVar> makespan = [ORFactory intVar: m domain: RANGE(m,0,totalDur)];

10 id<ORTaskDisjunctiveArray> disjunctive = [ORFactory disjunctiveArray:m range: M];
11 // model
12 [m minimize: makespan];
13 for(ORInt i = J.low; i <= J.up; i++)
14 for(ORInt j = M.low; j < M.up; j++)
15 [m add: [[task at: i : j] precedes: [task at: i : j+1]]];
16 for(ORInt i = J.low; i <= J.up; i++)
17 [m add: [[task at: i : Machines.up] isFinishedBy: makespan]];
18 for(ORInt i = J.low; i <= J.up; i++)
19 for(ORInt j = M.low; j <= M.up; j++)
20 [disjunctive[[resource at: i : j]] add: [task at: i : j]];
21 for(ORInt i=M.low; i <= M.up; i++)
22 [m add: disjunctive[i]];

Fig. 1. High-level technology-independent model in Objective-CP.

3.2 An Objective-CP Jobshop Model

With Objective-CP, models are containers capturing constraints that must
be satisfied as well as a relevant objective function. Figure 1 illustrates the
creation of a high-level declarative model. Line 1 creates a model m while lines
3-4 create ranges for the jobs J and machines M . Lines 5-6 create matrices
holding the processing time of the activities as well the resource that any activity
require. Line 8 creates a matrix task holding all the activities. Line 9 creates
a variable representing the makespan of the instance and line 10 creates an
array of disjunctive resources (as many as M). Lines 12-22 start by stating the
objective function and create the constraints. The loops state the job precedence
constraints, the fact that the makespan follows the end of each job, enforce
the duration of each activity on its disjunctive resource and finally add the
disjunctive resources to the model.

Following [7], we emphasize that this model is purely descriptive, technology
agnostic and captures a triplet hX,C,Oi in which X is the set of variables, C
is the set of constraints and O is an optional objective function. To exploit this
model, it is necessary to concretize the model into a specific program.
Each technology imposes restrictions on what vocabulary can be used to de-
scribe models. For instance, a MIP requires linear inequalities over discrete and
continuous variables only. Objective-CP uses model transformations such as
⌧ to rewrite models into refined forms that are equivalent but conform to the
requirements of the technology. Namely, M1 = ⌧(M0) captures the rewriting of
M0 into an equivalent M1. Once rewritten, models must be mapped into a solver.
Objective-CP achieves this through a concretization function � that delivers
an executable optimization program for a technology T , i.e., P = �

T

(⌧(m)).
The reader is referred to [7] for the full details and the formalization of this
process. The same high-level model can be concretized several times into mul-

High-level Modeling

133

1 id<ORModel> m = [ORFactory createModel];
2 // data setup ...
3 id<ORIntRange> J = RANGE(m,0,nbJobs-1);
4 id<ORIntRange> M = RANGE(m,0,nbMach-1);
5 id<ORIntMatrix> D = [ORFactory intMatrix: m range: J : M];
6 id<ORIntMatrix> resource = [ORFactory intMatrix: m range: J : M];
7 // variables
8 id<ORTaskVarMatrix> task = [ORFactory tvMatrix:m range:J:M horizon:H duration:D];
9 id<ORIntVar> makespan = [ORFactory intVar: m domain: RANGE(m,0,totalDur)];

10 id<ORTaskDisjunctiveArray> disjunctive = [ORFactory disjunctiveArray:m range: M];
11 // model
12 [m minimize: makespan];
13 for(ORInt i = J.low; i <= J.up; i++)
14 for(ORInt j = M.low; j < M.up; j++)
15 [m add: [[task at: i : j] precedes: [task at: i : j+1]]];
16 for(ORInt i = J.low; i <= J.up; i++)
17 [m add: [[task at: i : Machines.up] isFinishedBy: makespan]];
18 for(ORInt i = J.low; i <= J.up; i++)
19 for(ORInt j = M.low; j <= M.up; j++)
20 [disjunctive[[resource at: i : j]] add: [task at: i : j]];
21 for(ORInt i=M.low; i <= M.up; i++)
22 [m add: disjunctive[i]];

Fig. 1. High-level technology-independent model in Objective-CP.

3.2 An Objective-CP Jobshop Model

With Objective-CP, models are containers capturing constraints that must
be satisfied as well as a relevant objective function. Figure 1 illustrates the
creation of a high-level declarative model. Line 1 creates a model m while lines
3-4 create ranges for the jobs J and machines M . Lines 5-6 create matrices
holding the processing time of the activities as well the resource that any activity
require. Line 8 creates a matrix task holding all the activities. Line 9 creates
a variable representing the makespan of the instance and line 10 creates an
array of disjunctive resources (as many as M). Lines 12-22 start by stating the
objective function and create the constraints. The loops state the job precedence
constraints, the fact that the makespan follows the end of each job, enforce
the duration of each activity on its disjunctive resource and finally add the
disjunctive resources to the model.

Following [7], we emphasize that this model is purely descriptive, technology
agnostic and captures a triplet hX,C,Oi in which X is the set of variables, C
is the set of constraints and O is an optional objective function. To exploit this
model, it is necessary to concretize the model into a specific program.
Each technology imposes restrictions on what vocabulary can be used to de-
scribe models. For instance, a MIP requires linear inequalities over discrete and
continuous variables only. Objective-CP uses model transformations such as
⌧ to rewrite models into refined forms that are equivalent but conform to the
requirements of the technology. Namely, M1 = ⌧(M0) captures the rewriting of
M0 into an equivalent M1. Once rewritten, models must be mapped into a solver.
Objective-CP achieves this through a concretization function � that delivers
an executable optimization program for a technology T , i.e., P = �

T

(⌧(m)).
The reader is referred to [7] for the full details and the formalization of this
process. The same high-level model can be concretized several times into mul-

min makespan

s.t.

8
><

>:

precedes(taski,j , taski+1,j) 8i 2 M, 8j 2 J
finished by(taskm,j ,makespan) 8j 2 J

disjunctive({task
�
j
k,j

| j 2 J, k 2 1 . . .m,�j
k = r}) 8r 2 M

Fig. 2. Global constraint formulation

min makespan

s.t.

8
>>>>>>><

>>>>>>>:

xi,j � 0 8j 2 J, 8i 2 M
x
�
j
h,j

� x
�
j
h�1,j

+ p
�
j
h�1,j

8j 2 J, h 2 2, . . . ,m

xi,j � xi,k + pi,k � zi,j,k ⇤ V 8j, k 2 J, k < j, i 2 M
xi,k � xi,j + pi,j � (1� zi,j,k) ⇤ V 8j, k 2 J, k < j, i 2 M
makespan � x

�
j
m,j

+ p
�
j
m,j

8j 2 J

zi,j,k 2 {0, 1} 8i 2 M, 8j 2 J, 8k 2 J

Fig. 3. Disjunctive formulation

tiple solver instances. In particular, Objective-CP supports the simultaneous
concretization of one model into both a CP solver and a MIP solver, yielding
two independent programs.

Scheduling Reformulations The Objective-CP model reformulations must be
adapted to scheduling. The input is the model presented in Figure 1. Three
reformulation operators are provided:

– ⌧
CP

: The operator transforms the high-level model into a form suitable for a
constraint programming solver supporting global constraints. The resulting
model shown in Figure 2 maps perfectly to the high-level model.

– ⌧
MIP�Disjunctive

: The operator employs a big-M modelization technique to
encode the disjunctive constraints. The application of the operator produces
the model shown in Figure 3.

– ⌧
MIP�TI

: The operator uses the time-indexed formulation shown in Figure 4.

The implementation of the reformulation operators uses rewriting rules for the
global constraints similar to those found in [4]. For instance, an operator cre-
ates auxiliary variables and visits the global constraints to replace them with

min makespan

s.t.

8
>>>>>>><

>>>>>>>:

P
t2H xi,j,t = 0 8j 2 J, 8i 2 MP
t2H (t+ pi,j) ⇤ xi,j,t makespan 8j 2 J, 8i 2 MP
j2J

P
t02Ti,j,t

xi, j, t
0 1 8i 2 M, 8t 2 H,

Ti,j,t = {t� pi,j + 1, . . . , t}P
t2H (t+ p

�
j
h�1,j

) ⇤ x
�
j
h�1,j,t

P

t2H t ⇤ x
�
j
h,j,t

8j 2 J, h 2 2, . . . ,m

xi,j,t 2 {0, 1} 8i 2 M, 8j 2 J, 8t 2 H

Fig. 4. Time-indexed formulation

min makespan

s.t.

8
><

>:

precedes(taski,j , taski+1,j) 8i 2 M, 8j 2 J
finished by(taskm,j ,makespan) 8j 2 J

disjunctive({task
�
j
k,j

| j 2 J, k 2 1 . . .m,�j
k = r}) 8r 2 M

Fig. 2. Global constraint formulation

min makespan

s.t.

8
>>>>>>><

>>>>>>>:

xi,j � 0 8j 2 J, 8i 2 M
x
�
j
h,j

� x
�
j
h�1,j

+ p
�
j
h�1,j

8j 2 J, h 2 2, . . . ,m

xi,j � xi,k + pi,k � zi,j,k ⇤ V 8j, k 2 J, k < j, i 2 M
xi,k � xi,j + pi,j � (1� zi,j,k) ⇤ V 8j, k 2 J, k < j, i 2 M
makespan � x

�
j
m,j

+ p
�
j
m,j

8j 2 J

zi,j,k 2 {0, 1} 8i 2 M, 8j 2 J, 8k 2 J

Fig. 3. Disjunctive formulation

tiple solver instances. In particular, Objective-CP supports the simultaneous
concretization of one model into both a CP solver and a MIP solver, yielding
two independent programs.

Scheduling Reformulations The Objective-CP model reformulations must be
adapted to scheduling. The input is the model presented in Figure 1. Three
reformulation operators are provided:

– ⌧
CP

: The operator transforms the high-level model into a form suitable for a
constraint programming solver supporting global constraints. The resulting
model shown in Figure 2 maps perfectly to the high-level model.

– ⌧
MIP�Disjunctive

: The operator employs a big-M modelization technique to
encode the disjunctive constraints. The application of the operator produces
the model shown in Figure 3.

– ⌧
MIP�TI

: The operator uses the time-indexed formulation shown in Figure 4.

The implementation of the reformulation operators uses rewriting rules for the
global constraints similar to those found in [4]. For instance, an operator cre-
ates auxiliary variables and visits the global constraints to replace them with

min makespan

s.t.

8
>>>>>>><

>>>>>>>:

P
t2H xi,j,t = 0 8j 2 J, 8i 2 MP
t2H (t+ pi,j) ⇤ xi,j,t makespan 8j 2 J, 8i 2 MP
j2J

P
t02Ti,j,t

xi, j, t
0 1 8i 2 M, 8t 2 H,

Ti,j,t = {t� pi,j + 1, . . . , t}P
t2H (t+ p

�
j
h�1,j

) ⇤ x
�
j
h�1,j,t

P

t2H t ⇤ x
�
j
h,j,t

8j 2 J, h 2 2, . . . ,m

xi,j,t 2 {0, 1} 8i 2 M, 8j 2 J, 8t 2 H

Fig. 4. Time-indexed formulation

High-level model

Flatten Flattening a model decomposes complex expressions into simpler
ones, often adding variables and constraints in the process.

Continuous Performs a continuous relaxation of a model, replacing integer-
valued domain constraints with continuous interval domains.

Linear Creates a linear reformulation to replace global constraints and
logical constraints with a set of equivalent linear constraints [11].

Fig. 1. Examples of commonly used model operators.

Definition 1 A model M is of the form hX,C,Oi where X is the set of model
variables, C the model constraints and O the (optional) objective function.

Definition 2 A model transformation ⌧ transforms a model M = hX,C,Oi into
another model ⌧(M) = hX

o

, C
o

, O
o

i satisfying X ✓ X
o

.

Examples of model transformations performed by Objective-CP are shown in
Figure 1. When models are in flattened form (su�ciently decomposed), they can
be concretized in an optimization program.

Definition 3 A model concretization � takes a model M in a flattened form and
concretizes M into a program P = hM, �i, where P = �(M). The concretization
associates a concrete variable with every model variable, a concrete constraint to
every model constraint, and a concrete objective with the model objective.

To obtain an optimization program P from a modelM ,Objective-CP performs
a series of model transformations followed by a concretization, e.g.,

P = �(⌧
k�1

(· · · ⌧
0

(M) · · ·)).
Model transformations in Objective-CP always extend the set of variables,
which is convenient both from a semantic and implementation standpoint. In
this paper, we ignore that Objective-CP can provide a search procedure since
it is not relevant for model combinators. Hence, we define a program as a pair
(model,concretization).

Definition 4 (Program) A program is a pair P = hM, �i, where M is a model
in flattened form and � is a concretization.

Model transformations impose a natural partial order between models through
the concept of relaxation and tightening. These concepts are critical to define
sound combinators [8].

Definition 5 (Solution Set) A solution for a model M = hX,C,Oi is an as-
signment of all variables in X satisfying C. The set of solutions of model M is
denoted by Sol(M).

Definition 6 (Projection of Solution Sets) Consider a model M = hX,C,Oi
along with a solution s and X 0 ✓ X. Then, Sol|

X

0(s) and Sol|
X

0(M) denotes
the projection of solution s and the solution set of M on the variables in X 0,
respectively.

CPconcretize
MLINEAR

linearize

Flatten Flattening a model decomposes complex expressions into simpler
ones, often adding variables and constraints in the process.

Continuous Performs a continuous relaxation of a model, replacing integer-
valued domain constraints with continuous interval domains.

Linear Creates a linear reformulation to replace global constraints and
logical constraints with a set of equivalent linear constraints [11].

Fig. 1. Examples of commonly used model operators.

Definition 1 A model M is of the form hX,C,Oi where X is the set of model
variables, C the model constraints and O the (optional) objective function.

Definition 2 A model transformation ⌧
0

transforms a model M = hX,C,Oi
into another model ⌧(M) = hX

o

, C
o

, O
o

i satisfying X ✓ X
o

.

Examples of model transformations performed by Objective-CP are shown in
Figure 1. When models are in flattened form (su�ciently decomposed), they can
be concretized in an optimization program.

Definition 3 A model concretization � takes a model M in a flattened form and
concretizes M into a program P = hM, �i, where P = �(M). The concretization
associates a concrete variable with every model variable, a concrete constraint to
every model constraint, and a concrete objective with the model objective.

To obtain an optimization program P from a modelM ,Objective-CP performs
a series of model transformations followed by a concretization, e.g.,

P = �(⌧
k�1

(· · · ⌧
0

(M) · · ·)).
Model transformations in Objective-CP always extend the set of variables,
which is convenient both from a semantic and implementation standpoint. In
this paper, we ignore that Objective-CP can provide a search procedure since
it is not relevant for model combinators. Hence, we define a program as a pair
(model,concretization).

Definition 4 (Program) A program is a pair P = hM, �i, where M is a model
in flattened form and � is a concretization.

Model transformations impose a natural partial order between models through
the concept of relaxation and tightening. These concepts are critical to define
sound combinators [8].

Definition 5 (Solution Set) A solution for a model M = hX,C,Oi is an as-
signment of all variables in X satisfying C. The set of solutions of model M is
denoted by Sol(M).

Definition 6 (Projection of Solution Sets) Consider a model M = hX,C,Oi
along with a solution s and X 0 ✓ X. Then, Sol|

X

0(s) and Sol|
X

0(M) denotes
the projection of solution s and the solution set of M on the variables in X 0,
respectively.

MIPconcretize

Flatten Flattening a model decomposes complex expressions into simpler
ones, often adding variables and constraints in the process.

Continuous Performs a continuous relaxation of a model, replacing integer-
valued domain constraints with continuous interval domains.

Linear Creates a linear reformulation to replace global constraints and
logical constraints with a set of equivalent linear constraints [11].

Fig. 1. Examples of commonly used model operators.

Definition 1 A model M is of the form hX,C,Oi where X is the set of model
variables, C the model constraints and O the (optional) objective function.

Definition 2 A model transformation ⌧ transforms a model M = hX,C,Oi into
another model ⌧(M) = hX

o

, C
o

, O
o

i satisfying X ✓ X
o

.

Examples of model transformations performed by Objective-CP are shown in
Figure 1. When models are in flattened form (su�ciently decomposed), they can
be concretized in an optimization program.

Definition 3 A model concretization � takes a model M in a flattened form and
concretizes M into a program P = hM, �i, where P = �(M). The concretization
associates a concrete variable with every model variable, a concrete constraint to
every model constraint, and a concrete objective with the model objective.

To obtain an optimization program P from a modelM ,Objective-CP performs
a series of model transformations followed by a concretization, e.g.,

P = �(⌧
k�1

(· · · ⌧
0

(M) · · ·)).
Model transformations in Objective-CP always extend the set of variables,
which is convenient both from a semantic and implementation standpoint. In
this paper, we ignore that Objective-CP can provide a search procedure since
it is not relevant for model combinators. Hence, we define a program as a pair
(model,concretization).

Definition 4 (Program) A program is a pair P = hM, �i, where M is a model
in flattened form and � is a concretization.

Model transformations impose a natural partial order between models through
the concept of relaxation and tightening. These concepts are critical to define
sound combinators [8].

Definition 5 (Solution Set) A solution for a model M = hX,C,Oi is an as-
signment of all variables in X satisfying C. The set of solutions of model M is
denoted by Sol(M).

Definition 6 (Projection of Solution Sets) Consider a model M = hX,C,Oi
along with a solution s and X 0 ✓ X. Then, Sol|

X

0(s) and Sol|
X

0(M) denotes
the projection of solution s and the solution set of M on the variables in X 0,
respectively.

High-level Modeling

134

min makespan

s.t.

8
><

>:

precedes(taski,j , taski+1,j) 8i 2 M, 8j 2 J
finished by(taskm,j ,makespan) 8j 2 J

disjunctive({task
�
j
k,j

| j 2 J, k 2 1 . . .m,�j
k = r}) 8r 2 M

Fig. 2. Global constraint formulation

min makespan

s.t.

8
>>>>>>><

>>>>>>>:

xi,j � 0 8j 2 J, 8i 2 M
x
�
j
h,j

� x
�
j
h�1,j

+ p
�
j
h�1,j

8j 2 J, h 2 2, . . . ,m

xi,j � xi,k + pi,k � zi,j,k ⇤ V 8j, k 2 J, k < j, i 2 M
xi,k � xi,j + pi,j � (1� zi,j,k) ⇤ V 8j, k 2 J, k < j, i 2 M
makespan � x

�
j
m,j

+ p
�
j
m,j

8j 2 J

zi,j,k 2 {0, 1} 8i 2 M, 8j 2 J, 8k 2 J

Fig. 3. Disjunctive formulation

tiple solver instances. In particular, Objective-CP supports the simultaneous
concretization of one model into both a CP solver and a MIP solver, yielding
two independent programs.

Scheduling Reformulations The Objective-CP model reformulations must be
adapted to scheduling. The input is the model presented in Figure 1. Three
reformulation operators are provided:

– ⌧
CP

: The operator transforms the high-level model into a form suitable for a
constraint programming solver supporting global constraints. The resulting
model shown in Figure 2 maps perfectly to the high-level model.

– ⌧
MIP�Disjunctive

: The operator employs a big-M modelization technique to
encode the disjunctive constraints. The application of the operator produces
the model shown in Figure 3.

– ⌧
MIP�TI

: The operator uses the time-indexed formulation shown in Figure 4.

The implementation of the reformulation operators uses rewriting rules for the
global constraints similar to those found in [4]. For instance, an operator cre-
ates auxiliary variables and visits the global constraints to replace them with

min makespan

s.t.

8
>>>>>>><

>>>>>>>:

P
t2H xi,j,t = 0 8j 2 J, 8i 2 MP
t2H (t+ pi,j) ⇤ xi,j,t makespan 8j 2 J, 8i 2 MP
j2J

P
t02Ti,j,t

xi, j, t
0 1 8i 2 M, 8t 2 H,

Ti,j,t = {t� pi,j + 1, . . . , t}P
t2H (t+ p

�
j
h�1,j

) ⇤ x
�
j
h�1,j,t

P

t2H t ⇤ x
�
j
h,j,t

8j 2 J, h 2 2, . . . ,m

xi,j,t 2 {0, 1} 8i 2 M, 8j 2 J, 8t 2 H

Fig. 4. Time-indexed formulation

min makespan

s.t.

8
><

>:

precedes(taski,j , taski+1,j) 8i 2 M, 8j 2 J
finished by(taskm,j ,makespan) 8j 2 J

disjunctive({task
�
j
k,j

| j 2 J, k 2 1 . . .m,�j
k = r}) 8r 2 M

Fig. 2. Global constraint formulation

min makespan

s.t.

8
>>>>>>><

>>>>>>>:

xi,j � 0 8j 2 J, 8i 2 M
x
�
j
h,j

� x
�
j
h�1,j

+ p
�
j
h�1,j

8j 2 J, h 2 2, . . . ,m

xi,j � xi,k + pi,k � zi,j,k ⇤ V 8j, k 2 J, k < j, i 2 M
xi,k � xi,j + pi,j � (1� zi,j,k) ⇤ V 8j, k 2 J, k < j, i 2 M
makespan � x

�
j
m,j

+ p
�
j
m,j

8j 2 J

zi,j,k 2 {0, 1} 8i 2 M, 8j 2 J, 8k 2 J

Fig. 3. Disjunctive formulation

tiple solver instances. In particular, Objective-CP supports the simultaneous
concretization of one model into both a CP solver and a MIP solver, yielding
two independent programs.

Scheduling Reformulations The Objective-CP model reformulations must be
adapted to scheduling. The input is the model presented in Figure 1. Three
reformulation operators are provided:

– ⌧
CP

: The operator transforms the high-level model into a form suitable for a
constraint programming solver supporting global constraints. The resulting
model shown in Figure 2 maps perfectly to the high-level model.

– ⌧
MIP�Disjunctive

: The operator employs a big-M modelization technique to
encode the disjunctive constraints. The application of the operator produces
the model shown in Figure 3.

– ⌧
MIP�TI

: The operator uses the time-indexed formulation shown in Figure 4.

The implementation of the reformulation operators uses rewriting rules for the
global constraints similar to those found in [4]. For instance, an operator cre-
ates auxiliary variables and visits the global constraints to replace them with

min makespan

s.t.

8
>>>>>>><

>>>>>>>:

P
t2H xi,j,t = 0 8j 2 J, 8i 2 MP
t2H (t+ pi,j) ⇤ xi,j,t makespan 8j 2 J, 8i 2 MP
j2J

P
t02Ti,j,t

xi, j, t
0 1 8i 2 M, 8t 2 H,

Ti,j,t = {t� pi,j + 1, . . . , t}P
t2H (t+ p

�
j
h�1,j

) ⇤ x
�
j
h�1,j,t

P

t2H t ⇤ x
�
j
h,j,t

8j 2 J, h 2 2, . . . ,m

xi,j,t 2 {0, 1} 8i 2 M, 8j 2 J, 8t 2 H

Fig. 4. Time-indexed formulation

global constraint formulation:

disjunctive linear formulation:

Creating the Parallel Runnable

135

1 id<ORModel> m = ... // Def. of Jobshop Model
2 id<ORModel> LinearModel = [ORFactory linearize:m encoding:Disjunctive];
3 id<ORRunnable> r0 = [ORFactory CPRunnable: m solve: search];
4 id<ORRunnable> r1 = [ORFactory MIPRunnable: LinearModel];
5 id<ORRunnable> parallel = [ORCombinator completeParallel: r0 with: r1];
6 [parallel run];

Fig. 6. Running a CP and MIP encoding of jobshop in parallel.

across thread boundaries. Two runnables R0 and R1 running in two distinct
threads T0 and T1 can cooperate transparently.

Given a runnable R0 derived from a high-level model M = hX,C,Oi, a
solution � from R0 is a mapping from X to Z associating to each variable in X
a value that satisfies all the constraints in C. Observe how solutions are encoded
in term of the original high-level model. It enables the transcoding of a solution
to another runnable R1 also derived from model M . The fragment

1 transcode(Runnable t,Solution �) ! �

0 {
2 �

0 := ;
3 forall x in vars(�):
4 {hyi 7! vii} := decode(x,�(x),t)
5 �

0 := �

0 [{hyi 7! vii}
6 t.inject(�0)
7 return �

0

8 }

captures the transcoding. Given a solution � and a target runnable t, it creates
a new concrete solution �0 adapted to t’s encoding. The loop on line 3 iterates
over all the variables in � and decodes with the call on line 4 the assignment
to variable x in term of its representation in t. If t relies on an encoding of x
with domain D(x) = {0 · · ·n} into n+ 1 binary variables x0 · · ·xn

, the decoder
produces a collection of assignments to cover all the binary variables y

i

of t (only
one of which is assigned 1). Line 6 installs the solution �0 in t and returns it.

The ability to stream solutions from R0 to R1 is critical. Gurobi, for instance,
cannot tighten its upper bound to a new incumbent bound f⇤ and instead man-
dates the communication of the entire solution which must be installed and val-
idated to get the bound. A Gurobi runnable must therefore consume solutions
from a callback invoked at each node of its search tree.

3.4 Combinators

Figure 6 illustrates the handful of lines of code required to create a composite
parallel solver. Line 2 creates the chosen linear reformulation. Lines 3 and 4 cre-
ate the CP and MIP runnable from the original formulation m and the selected
linear reformulation linearModel3. Finally line 5 creates the parallel composite
and lines 6 executes the resulting hybrid. Note how all the integration and com-
munication aspects are fully automated. Indeed, the parallel combinator auto-
matically takes care of the necessary plumbing to concurrently share the various
products and transcode solutions as needed. Interested readers are referred to [7]
for further details.
3 Line 3 refers to the search procedure defined earlier with a closure and named search.

Pure Solvers

136

0

150

300

450

600

Orb0
1(1

0x
10

)

Orb0
2(1

0x
10

)

Orb0
3(1

0x
10

)

Orb0
4(1

0x
10

)

Orb0
5(1

0x
10

)

Orb0
6(1

0x
10

)

Orb0
7(1

0x
10

)

Orb0
8(1

0x
10

)

Orb0
9(1

0x
10

)

Orb1
0(1

0x
10

)

CP time MIP time

Adding Plain Parallel

137

0

150

300

450

600

Orb0
1(1

0x
10

)

Orb0
2(1

0x
10

)

Orb0
3(1

0x
10

)

Orb0
4(1

0x
10

)

Orb0
5(1

0x
10

)

Orb0
6(1

0x
10

)

Orb0
7(1

0x
10

)

Orb0
8(1

0x
10

)

Orb0
9(1

0x
10

)

Orb1
0(1

0x
10

)

CP time MIP time CP || MIP time

Adding Parallel with LNS

138

1

10

100

Orb0
1(1

0x
10

)

Orb0
2(1

0x
10

)

Orb0
3(1

0x
10

)

Orb0
4(1

0x
10

)

Orb0
5(1

0x
10

)

Orb0
6(1

0x
10

)

Orb0
7(1

0x
10

)

Orb0
8(1

0x
10

)

Orb0
9(1

0x
10

)

Orb1
0(1

0x
10

)

CP time MIP time CP || MIP LNS(CP) || MIP LNS(CP) || CP

Results

139

Instances CP MIP CP k MIP LNSCP k MIP LNSCP k CP

time ub time ub time ub time ub time ub
Orb01(10 ⇥ 10) 145.38 1059* 600.0 1072 176.12 1059* 600.0 1071 41.96 1059*
Orb02(10 ⇥ 10) 6.80 888* 19.06 888* 8.36 888* 18.97 888* 6.33 888*
Orb03(10 ⇥ 10) 600.0 1015 600.0 1021 600.0 1015 600.0 1005 600.0 1015
Orb04(10 ⇥ 10) 8.17 1005* 63.07 1005* 16.33 1005* 53.33 1005* 7.67 1005*
Orb05(10 ⇥ 10) 132.46 887* 74.20 887* 110.82 887* 70.92 887* 70.35 887*
Orb06(10 ⇥ 10) 57.37 1010* 528.22 1010* 135.53 1010* 600.0 1010** 52.05 1010
Orb07(10 ⇥ 10) 53.22 397* 43.64 397* 39.15 397* 18.65 397* 11.23 397*
Orb08(10 ⇥ 10) 467.19 899* 99.86 899* 6.82 899* 84.41 899* 4.57 899*
Orb09(10 ⇥ 10) 5.31 934* 75.36 934* 9.41 934* 85.55 934* 5.31 934*
Orb10(10 ⇥ 10) 66.24 944* 51.20 944* 33.87 944* 28.34 944* 5.31 944*
la31(30 ⇥ 10) 600.0 2801 600.0 2003 600.0 2109 30.82 1784* 17.23 1784*
la36(15 ⇥ 15) 600.0 2059 600.0 1292 600.0 1297 600.0 1281 136.96 1268*
la37(15 ⇥ 15) 600.0 1855 600.0 1454 600.0 1478 13.62 1397* 13.97 1397*
la38(15⇥ 15) 600.0 1633 600.0 1230 600.0 1243 600.0 1196 600.0 1255
la21(15⇥ 10) 600.0 1129 600.0 1079 600.0 1097 600.0 1058 600.0 1046

Table 1. Experimental Results for CP and MIP solvers as well as three hybrids.

Instances CP MIP CPS
threads 1 2 4 1 2 4 3
Orb05 (10 ⇥ 10) 70.20 75.26 29.58 32.92 43.43 17.82 60.36
Orb07 (10 ⇥ 10) 38.60 48.65 9.7 40.64 26.46 34.56 39.12
Orb08 (10 ⇥ 10) 1.66 600 600 123.28 55.64 68.70 1.28
Orb10 (10 ⇥ 10) 28.06 32.07 29.52 65.80 30.47 15.49 24.84
la10 (15 ⇥ 5) 0.18 0.22 0.16 600 600 600 0.26
la11 (20 ⇥ 5) 1.46 2.38 2.21 600 600 600 1.22

Table 2. Performance of CP and MIP jobshop solvers given 1, 2, and 4 threads.

This phenomenon happens within MIP solvers too and is illustrated in Ta-
ble 2. For instance, the solving time for MIP on Orb10 improves as threads are
added while it barely moves for the CP solver while Orb05 and Orb07 experi-
ence the opposite e↵ect (adding threads hurt Gurobi). To explore this fairness
question Table 2 reports on a few instances involving the CP and MIP solvers
with 1, 2 and 4 threads as well as a new composite, dubbed CPS, which com-
poses a sequential CP solver with a parallel tree search CP solver. The number of
threads can have unsettling e↵ects, sometimes improving or worsening the solv-
ing time. The ability to use the composite CP k CP (2) alleviates the problem.
Indeed, sequential and parallel CP share their bounds.

5 Conclusion

This paper extended model combinators to scheduling and provided empirical
evidence thatmodel combinators are useful in this domain. The approach empha-
sizes end-user flexibility and fosters the development of composites with custom
search strategies and non-trivial parallelization. The net result is a malleable
platform in which one can express sophisticated algorithm going beyond port-
folios. In addition, the composite solvers are more than the sum of their con-
stituents and yield a synergistic integration with little to no user-visible com-
plexity. Recent work suggest that MIP can compete with CP on certain classes
of scheduling instances. The parallel solvers derived here demonstrate that on
can routinely outperform standalone solvers at little to no end-user cost.

Overview

•Motivation

•Modeling Layer

•Variables / Constraints

•Transformations, reformulation and concretizations

•Consistency handling

•Solving Layer

•Microkernel

•Events / Propagators and Propagation

•Views

•Hybrids

•Search building blocks

•Parallel support

140

Search building blocks

• How to build a search facility ?

• Challenges

•Search is non-deterministic

•CP shines brightest when users exploit semantics through search

•Black-box (closed) search is easy to support

•Glass-box (open) search is a lot harder

•Parallel support should be orthogonal

141

Dealing with non-determinism

• One possible answer

• Rationale ?

•Preserves control through the host language

•No nested “search interpreter”

•No compromise: fully retains the ability to write custom search.

• Challenge

•Deal with subtleties of memory models.

142

Continuations
[Constraints,06 ; CP’06]

Continuations in a Nutshell

• What is it ?

•An abstraction to capture and restore control flow

• Support ?

•Some languages have it natively (Scheme/ML)

•Can be implemented in C/C++/Objective-C/Swift/….

143

Capture Control Flow

• What it captures

•Processor state (all registers)

• Instruction pointer (where we are)

•Runtime system stack

• What is left alone

•Any heap allocated structure

•Any static structure

144

Restore Control Flow

• What is restored

•Processor state

• Instruction pointer

•System stack

• Effects

• It abandons the current execution control flow

• It resumes a saved execution control flow

•The resumed control flow knows it is a restoration.

145

Benefits

• There are no interpreters

•All code executes natively at full speed

•All the facilities of the host language still work

•Breakpointing

•State inspection

•…

•All the native control flow instruction work unmodified.

146

Cost

• Expressed in two ways

•Time to save / restore the system stack

•Space used to preserve the system stack

• How significant is this ?

•Time-wise

•Continuation code is faster than hard-coded DFS!

•Memory copying is fast on Intel architectures

•Space-wise

•Relatively small (typically 1Kb per continuation)

•Can be made incremental (space-time tradeoff)

147

Pictorially

• Processor context

•A simple structure with all the
registers

• Stack

•A pointer to a memory block
with the copy of the state

• Count

•How many times it has been
called so far [0 ..

148

Continuation

Context

stack

copy of
stack

cnt : 0

Doing it in C++

• Processor Context (x86)

149

class Cont;
struct Ctx64 {
 long rax,rbx,rcx,rdx,rdi,rsi,rbp,rsp;
 long r8,r9,r10,r11,r12,r13,r14,r15,rip;
 unsigned int pad; // alignment padding.
 unsigned int mxcsr;
 double xmm0[2],xmm1[2],xmm2[2],xmm3[2],xmm4[2],xmm5[2];
 double xmm6[2],xmm7[2],xmm8[2],xmm9[2],xmm10[2],xmm11[2];
 double xmm12[2],xmm13[2],xmm14[2],xmm15[2];
 char fpu[108];
};
__attribute__((noinline)) Cont* saveCtx(struct Ctx64* ctx,Cont* k);
__attribute__((noinline)) Cont* restoreCtx(struct Ctx64* ctx,
 char* start,
 char* data,
 size_t length);

Context

150

static __thread char* baseStack = 0;
__attribute__((noinline)) Cont* saveCtx(struct Ctx64* ctx,Cont* k) {
 Cont* var = 0;
 char* sp;
 asm volatile("movq %%rsp , %%rax;" // load rax with SP
 :”=a”(sp)); // write rax into output var sp
 size_t len = baseStack - sp; // length of stack suffix
 k->saveStack(len,sp); // save it (memory copy)
 asm volatile("movq %%rbx,8(%%rax);\n\t"
 "movq %%rcx,16(%%rax);\n\t"
 …
 "jmp resume;\n\t"
 "goon: popq %%rbx;\n\t"
 " movq %%rbx, 128(%%rax);\n\t"
 " xor %%rax,%%rax;\n\t"
 " jmp end;\n\t"
 "resume: call goon;\n\t"
 "end: nop;\n\t"
 :”=a"(var) :"a"(ctx));
 return var;
}

Context

151

__attribute__((noinline)) Cont* restoreCtx(struct Ctx64* ctx,
 char* start,char* data,
 size_t length) {
 Cont* rv = 0;
 // ctx in rdi, start in rsi, data in rdx, length in ecx
 asm volatile("copystack: cmp $0x0,%%ecx ; \n\t"
 …
 " jmp copystack ; \n\t" //go to top
 "donecopy: mov %%rdi,%%rax ; \n\t" // context in rax
 "movq 8(%%rax),%%rbx ; \n\t" // restore state
 "movq 16(%%rax),%%rcx;\n\t"
 …
 "frstor 400(%%rax) ;\n\t" // restore FP
 "movq 128(%%rax),%%rdi ;\n\t" // rdi <- return
 "movq (%%rax),%%rax ;\n\t" // restore rax
 "jmp *%%rdi ;\n\t” // jump to end!!!
 :”=a”(rv) :"D"(ctx));
 return rv;
}

Now, it’s easy!

• Continuation is a class

152

class Cont {
 struct Ctx64 _target __attribute__ ((aligned(16)));
 size_t _length;
 char* _start, *_data;
 int _used,_cnt;
public:
 Cont();
 ~Cont();
 void saveStack(size_t len,void* s);
 void call();
 int nbCalls() const { return _used;}
};

Cont* takeContinuation();
void initContinuationLibrary(int *base);
void shutdown();

Key methods

153

void Cont::call() {
 struct Ctx64* ctx = &_target;
 ctx->rax = (long)this;
 restoreCtx(ctx,_start,_data,_length);
}

Cont* Cont::takeContinuation() {
 Cont* k = new Cont;
 struct Ctx64* ctx = &k->_target;
 Cont* resume = saveCtx(ctx,k);
 if (resume != 0) {
 resume->_used++;
 return resume;
 } else return k;
}

A simple non-deterministic binary choice

• Use closures to capture the branches

154

template <class Body1,class Body2>
void CPSolver::tryBin(Body1 left,Body2 right) {
 Cont* k = takeContinuation();
 if (k->nbCalls()==0) {
 _nbc++;
 _stack.push(k);
 left();
 } else {
 delete k;
 _nbc++;
 right();
 }
} There is a minor simplification

Should use Controllers to be general
See next talk with PVH.

Usage Demo

• Uses standard C/C++ loops, STL and any API we wish

• Uses closures for the two branches (x = c and x ≠ c)

•Does non-determinism

155

cp->solveAll([] {
 for(int i=0;i < n;i++) {
 withVarDo(q,min_dom(q),[cp](auto x) {
 while(!x->isBound()) {
 int c = x->getMin();
 cp->tryBin([=] { cp->add(x == c);},
 [=] { cp->add(x != c);});
 }
 });
 }
 cp->incrNbSol();
 *nbSol += 1;
 });

Revisiting Memory

• If you use ARC

•Objective-CP / Swift / C++

• shared_ptr<T> , unique_ptr<T>

• Be mindful

•You can exit the same closure multiple times (backtracking!)

• Therefore…

•Destructor of the smart pointer called several times!

•You can’t hold smart pointers on the stack / in closure

•You should have only reference to those or not use them

•Alternatively, use vanilla pointer handles

156

Overview

•Motivation

•Modeling Layer

•Variables / Constraints

•Transformations, reformulation and concretizations

•Consistency handling

•Solving Layer

•Microkernel

•Events / Propagators and Propagation

•Views

•Hybrids

•Search building blocks

•Parallel support

157

Parallel Support

• Very little needs to be done thanks to Gamma’s existence!

• Look at the picture

• Key ingredients

•Gamma

•Virtual binding

•Delegation API

158[DAMP’10 ; Computers & OR,’09 ; JOC’09]

Model

Concrete Model

Parallel Solver

workers

Sequential
Solver

Sequential
Solver

Sequential
Solver

Sequential
Solver

Ɣ

model

concretize

X

C

f X0 X3 Xn

CX0X

C

f

 0 1 m

CXm-1

Model

Concrete Model

Parallel Solver

workers

Sequential
Solver

Sequential
Solver

Sequential
Solver

Sequential
Solver

Ɣ

model

concretize

X

C

f X0 X3 Xn

 0 1 2 3 n

CX0X

C

f

 0 1 m

CXm-10

1

2

3

Threads

void ParSolver::label(var<int>& x,int v) {
auto w = worker[Thread::current()->getId()];
auto cx = w->gamma[x->getId()];
concreteLabel(cx,v);

}

